Metamath Proof Explorer


Theorem rimgim

Description: An isomorphism of rings is an isomorphism of their additive groups. (Contributed by AV, 24-Dec-2019)

Ref Expression
Assertion rimgim ( 𝐹 ∈ ( 𝑅 RingIso 𝑆 ) → 𝐹 ∈ ( 𝑅 GrpIso 𝑆 ) )

Proof

Step Hyp Ref Expression
1 rimrhm ( 𝐹 ∈ ( 𝑅 RingIso 𝑆 ) → 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) )
2 rhmghm ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) )
3 1 2 syl ( 𝐹 ∈ ( 𝑅 RingIso 𝑆 ) → 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) )
4 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
5 eqid ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 )
6 4 5 rimf1o ( 𝐹 ∈ ( 𝑅 RingIso 𝑆 ) → 𝐹 : ( Base ‘ 𝑅 ) –1-1-onto→ ( Base ‘ 𝑆 ) )
7 4 5 isgim ( 𝐹 ∈ ( 𝑅 GrpIso 𝑆 ) ↔ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : ( Base ‘ 𝑅 ) –1-1-onto→ ( Base ‘ 𝑆 ) ) )
8 3 6 7 sylanbrc ( 𝐹 ∈ ( 𝑅 RingIso 𝑆 ) → 𝐹 ∈ ( 𝑅 GrpIso 𝑆 ) )