Metamath Proof Explorer


Definition df-mhm

Description: A monoid homomorphism is a function on the base sets which preserves the binary operation and the identity. (Contributed by Mario Carneiro, 7-Mar-2015)

Ref Expression
Assertion df-mhm MndHom=sMnd,tMndfBasetBases|xBasesyBasesfx+sy=fx+tfyf0s=0t

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmhm classMndHom
1 vs setvars
2 cmnd classMnd
3 vt setvart
4 vf setvarf
5 cbs classBase
6 3 cv setvart
7 6 5 cfv classBaset
8 cmap class𝑚
9 1 cv setvars
10 9 5 cfv classBases
11 7 10 8 co classBasetBases
12 vx setvarx
13 vy setvary
14 4 cv setvarf
15 12 cv setvarx
16 cplusg class+𝑔
17 9 16 cfv class+s
18 13 cv setvary
19 15 18 17 co classx+sy
20 19 14 cfv classfx+sy
21 15 14 cfv classfx
22 6 16 cfv class+t
23 18 14 cfv classfy
24 21 23 22 co classfx+tfy
25 20 24 wceq wfffx+sy=fx+tfy
26 25 13 10 wral wffyBasesfx+sy=fx+tfy
27 26 12 10 wral wffxBasesyBasesfx+sy=fx+tfy
28 c0g class0𝑔
29 9 28 cfv class0s
30 29 14 cfv classf0s
31 6 28 cfv class0t
32 30 31 wceq wfff0s=0t
33 27 32 wa wffxBasesyBasesfx+sy=fx+tfyf0s=0t
34 33 4 11 crab classfBasetBases|xBasesyBasesfx+sy=fx+tfyf0s=0t
35 1 3 2 2 34 cmpo classsMnd,tMndfBasetBases|xBasesyBasesfx+sy=fx+tfyf0s=0t
36 0 35 wceq wffMndHom=sMnd,tMndfBasetBases|xBasesyBasesfx+sy=fx+tfyf0s=0t