| Step |
Hyp |
Ref |
Expression |
| 1 |
|
brric |
|- ( R ~=r S <-> ( R RingIso S ) =/= (/) ) |
| 2 |
|
n0 |
|- ( ( R RingIso S ) =/= (/) <-> E. f f e. ( R RingIso S ) ) |
| 3 |
|
rimrhm |
|- ( f e. ( R RingIso S ) -> f e. ( R RingHom S ) ) |
| 4 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
| 5 |
|
eqid |
|- ( mulGrp ` S ) = ( mulGrp ` S ) |
| 6 |
4 5
|
isrhm |
|- ( f e. ( R RingHom S ) <-> ( ( R e. Ring /\ S e. Ring ) /\ ( f e. ( R GrpHom S ) /\ f e. ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) ) ) ) |
| 7 |
6
|
simplbi |
|- ( f e. ( R RingHom S ) -> ( R e. Ring /\ S e. Ring ) ) |
| 8 |
3 7
|
syl |
|- ( f e. ( R RingIso S ) -> ( R e. Ring /\ S e. Ring ) ) |
| 9 |
8
|
exlimiv |
|- ( E. f f e. ( R RingIso S ) -> ( R e. Ring /\ S e. Ring ) ) |
| 10 |
9
|
pm4.71ri |
|- ( E. f f e. ( R RingIso S ) <-> ( ( R e. Ring /\ S e. Ring ) /\ E. f f e. ( R RingIso S ) ) ) |
| 11 |
1 2 10
|
3bitri |
|- ( R ~=r S <-> ( ( R e. Ring /\ S e. Ring ) /\ E. f f e. ( R RingIso S ) ) ) |