Description: Define the ring isomorphism relation. (Contributed by Jeff Madsen, 16-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | df-risc | |- ~=R = { <. r , s >. | ( ( r e. RingOps /\ s e. RingOps ) /\ E. f f e. ( r RngIso s ) ) } |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | crisc | |- ~=R |
|
1 | vr | |- r |
|
2 | vs | |- s |
|
3 | 1 | cv | |- r |
4 | crngo | |- RingOps |
|
5 | 3 4 | wcel | |- r e. RingOps |
6 | 2 | cv | |- s |
7 | 6 4 | wcel | |- s e. RingOps |
8 | 5 7 | wa | |- ( r e. RingOps /\ s e. RingOps ) |
9 | vf | |- f |
|
10 | 9 | cv | |- f |
11 | crngiso | |- RngIso |
|
12 | 3 6 11 | co | |- ( r RngIso s ) |
13 | 10 12 | wcel | |- f e. ( r RngIso s ) |
14 | 13 9 | wex | |- E. f f e. ( r RngIso s ) |
15 | 8 14 | wa | |- ( ( r e. RingOps /\ s e. RingOps ) /\ E. f f e. ( r RngIso s ) ) |
16 | 15 1 2 | copab | |- { <. r , s >. | ( ( r e. RingOps /\ s e. RingOps ) /\ E. f f e. ( r RngIso s ) ) } |
17 | 0 16 | wceq | |- ~=R = { <. r , s >. | ( ( r e. RingOps /\ s e. RingOps ) /\ E. f f e. ( r RngIso s ) ) } |