| Step |
Hyp |
Ref |
Expression |
| 0 |
|
crisc |
⊢ ≃𝑟 |
| 1 |
|
vr |
⊢ 𝑟 |
| 2 |
|
vs |
⊢ 𝑠 |
| 3 |
1
|
cv |
⊢ 𝑟 |
| 4 |
|
crngo |
⊢ RingOps |
| 5 |
3 4
|
wcel |
⊢ 𝑟 ∈ RingOps |
| 6 |
2
|
cv |
⊢ 𝑠 |
| 7 |
6 4
|
wcel |
⊢ 𝑠 ∈ RingOps |
| 8 |
5 7
|
wa |
⊢ ( 𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ) |
| 9 |
|
vf |
⊢ 𝑓 |
| 10 |
9
|
cv |
⊢ 𝑓 |
| 11 |
|
crngoiso |
⊢ RingOpsIso |
| 12 |
3 6 11
|
co |
⊢ ( 𝑟 RingOpsIso 𝑠 ) |
| 13 |
10 12
|
wcel |
⊢ 𝑓 ∈ ( 𝑟 RingOpsIso 𝑠 ) |
| 14 |
13 9
|
wex |
⊢ ∃ 𝑓 𝑓 ∈ ( 𝑟 RingOpsIso 𝑠 ) |
| 15 |
8 14
|
wa |
⊢ ( ( 𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ) ∧ ∃ 𝑓 𝑓 ∈ ( 𝑟 RingOpsIso 𝑠 ) ) |
| 16 |
15 1 2
|
copab |
⊢ { 〈 𝑟 , 𝑠 〉 ∣ ( ( 𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ) ∧ ∃ 𝑓 𝑓 ∈ ( 𝑟 RingOpsIso 𝑠 ) ) } |
| 17 |
0 16
|
wceq |
⊢ ≃𝑟 = { 〈 𝑟 , 𝑠 〉 ∣ ( ( 𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ) ∧ ∃ 𝑓 𝑓 ∈ ( 𝑟 RingOpsIso 𝑠 ) ) } |