Step |
Hyp |
Ref |
Expression |
1 |
|
eleq1 |
⊢ ( 𝑟 = 𝑅 → ( 𝑟 ∈ RingOps ↔ 𝑅 ∈ RingOps ) ) |
2 |
1
|
anbi1d |
⊢ ( 𝑟 = 𝑅 → ( ( 𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ) ↔ ( 𝑅 ∈ RingOps ∧ 𝑠 ∈ RingOps ) ) ) |
3 |
|
oveq1 |
⊢ ( 𝑟 = 𝑅 → ( 𝑟 RngIso 𝑠 ) = ( 𝑅 RngIso 𝑠 ) ) |
4 |
3
|
eleq2d |
⊢ ( 𝑟 = 𝑅 → ( 𝑓 ∈ ( 𝑟 RngIso 𝑠 ) ↔ 𝑓 ∈ ( 𝑅 RngIso 𝑠 ) ) ) |
5 |
4
|
exbidv |
⊢ ( 𝑟 = 𝑅 → ( ∃ 𝑓 𝑓 ∈ ( 𝑟 RngIso 𝑠 ) ↔ ∃ 𝑓 𝑓 ∈ ( 𝑅 RngIso 𝑠 ) ) ) |
6 |
2 5
|
anbi12d |
⊢ ( 𝑟 = 𝑅 → ( ( ( 𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ) ∧ ∃ 𝑓 𝑓 ∈ ( 𝑟 RngIso 𝑠 ) ) ↔ ( ( 𝑅 ∈ RingOps ∧ 𝑠 ∈ RingOps ) ∧ ∃ 𝑓 𝑓 ∈ ( 𝑅 RngIso 𝑠 ) ) ) ) |
7 |
|
eleq1 |
⊢ ( 𝑠 = 𝑆 → ( 𝑠 ∈ RingOps ↔ 𝑆 ∈ RingOps ) ) |
8 |
7
|
anbi2d |
⊢ ( 𝑠 = 𝑆 → ( ( 𝑅 ∈ RingOps ∧ 𝑠 ∈ RingOps ) ↔ ( 𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ) ) ) |
9 |
|
oveq2 |
⊢ ( 𝑠 = 𝑆 → ( 𝑅 RngIso 𝑠 ) = ( 𝑅 RngIso 𝑆 ) ) |
10 |
9
|
eleq2d |
⊢ ( 𝑠 = 𝑆 → ( 𝑓 ∈ ( 𝑅 RngIso 𝑠 ) ↔ 𝑓 ∈ ( 𝑅 RngIso 𝑆 ) ) ) |
11 |
10
|
exbidv |
⊢ ( 𝑠 = 𝑆 → ( ∃ 𝑓 𝑓 ∈ ( 𝑅 RngIso 𝑠 ) ↔ ∃ 𝑓 𝑓 ∈ ( 𝑅 RngIso 𝑆 ) ) ) |
12 |
8 11
|
anbi12d |
⊢ ( 𝑠 = 𝑆 → ( ( ( 𝑅 ∈ RingOps ∧ 𝑠 ∈ RingOps ) ∧ ∃ 𝑓 𝑓 ∈ ( 𝑅 RngIso 𝑠 ) ) ↔ ( ( 𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ) ∧ ∃ 𝑓 𝑓 ∈ ( 𝑅 RngIso 𝑆 ) ) ) ) |
13 |
|
df-risc |
⊢ ≃𝑟 = { 〈 𝑟 , 𝑠 〉 ∣ ( ( 𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps ) ∧ ∃ 𝑓 𝑓 ∈ ( 𝑟 RngIso 𝑠 ) ) } |
14 |
6 12 13
|
brabg |
⊢ ( ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐵 ) → ( 𝑅 ≃𝑟 𝑆 ↔ ( ( 𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ) ∧ ∃ 𝑓 𝑓 ∈ ( 𝑅 RngIso 𝑆 ) ) ) ) |