Metamath Proof Explorer


Theorem ricgic

Description: If two rings are (ring) isomorphic, their additive groups are (group) isomorphic. (Contributed by AV, 24-Dec-2019)

Ref Expression
Assertion ricgic
|- ( R ~=r S -> R ~=g S )

Proof

Step Hyp Ref Expression
1 brric2
 |-  ( R ~=r S <-> ( ( R e. Ring /\ S e. Ring ) /\ E. f f e. ( R RingIso S ) ) )
2 rimgim
 |-  ( f e. ( R RingIso S ) -> f e. ( R GrpIso S ) )
3 brgici
 |-  ( f e. ( R GrpIso S ) -> R ~=g S )
4 2 3 syl
 |-  ( f e. ( R RingIso S ) -> R ~=g S )
5 4 exlimiv
 |-  ( E. f f e. ( R RingIso S ) -> R ~=g S )
6 1 5 simplbiim
 |-  ( R ~=r S -> R ~=g S )