Description: Prove isomorphic by an explicit isomorphism. (Contributed by Stefan O'Rear, 25-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | brgici | |- ( F e. ( R GrpIso S ) -> R ~=g S ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ne0i | |- ( F e. ( R GrpIso S ) -> ( R GrpIso S ) =/= (/) ) |
|
2 | brgic | |- ( R ~=g S <-> ( R GrpIso S ) =/= (/) ) |
|
3 | 1 2 | sylibr | |- ( F e. ( R GrpIso S ) -> R ~=g S ) |