Metamath Proof Explorer


Theorem dvrcl

Description: Closure of division operation. (Contributed by Mario Carneiro, 2-Jul-2014)

Ref Expression
Hypotheses dvrcl.b B=BaseR
dvrcl.o U=UnitR
dvrcl.d ×˙=/rR
Assertion dvrcl RRingXBYUX×˙YB

Proof

Step Hyp Ref Expression
1 dvrcl.b B=BaseR
2 dvrcl.o U=UnitR
3 dvrcl.d ×˙=/rR
4 eqid R=R
5 eqid invrR=invrR
6 1 4 2 5 3 dvrval XBYUX×˙Y=XRinvrRY
7 6 3adant1 RRingXBYUX×˙Y=XRinvrRY
8 2 5 1 ringinvcl RRingYUinvrRYB
9 8 3adant2 RRingXBYUinvrRYB
10 1 4 ringcl RRingXBinvrRYBXRinvrRYB
11 9 10 syld3an3 RRingXBYUXRinvrRYB
12 7 11 eqeltrd RRingXBYUX×˙YB