Metamath Proof Explorer


Theorem unitdvcl

Description: The units are closed under division. (Contributed by Mario Carneiro, 2-Jul-2014)

Ref Expression
Hypotheses unitdvcl.o U=UnitR
unitdvcl.d ×˙=/rR
Assertion unitdvcl RRingXUYUX×˙YU

Proof

Step Hyp Ref Expression
1 unitdvcl.o U=UnitR
2 unitdvcl.d ×˙=/rR
3 eqid BaseR=BaseR
4 3 1 unitcl XUXBaseR
5 eqid R=R
6 eqid invrR=invrR
7 3 5 1 6 2 dvrval XBaseRYUX×˙Y=XRinvrRY
8 4 7 sylan XUYUX×˙Y=XRinvrRY
9 8 3adant1 RRingXUYUX×˙Y=XRinvrRY
10 1 6 unitinvcl RRingYUinvrRYU
11 10 3adant2 RRingXUYUinvrRYU
12 1 5 unitmulcl RRingXUinvrRYUXRinvrRYU
13 11 12 syld3an3 RRingXUYUXRinvrRYU
14 9 13 eqeltrd RRingXUYUX×˙YU