Step |
Hyp |
Ref |
Expression |
1 |
|
unitdvcl.o |
⊢ 𝑈 = ( Unit ‘ 𝑅 ) |
2 |
|
unitdvcl.d |
⊢ / = ( /r ‘ 𝑅 ) |
3 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
4 |
3 1
|
unitcl |
⊢ ( 𝑋 ∈ 𝑈 → 𝑋 ∈ ( Base ‘ 𝑅 ) ) |
5 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
6 |
|
eqid |
⊢ ( invr ‘ 𝑅 ) = ( invr ‘ 𝑅 ) |
7 |
3 5 1 6 2
|
dvrval |
⊢ ( ( 𝑋 ∈ ( Base ‘ 𝑅 ) ∧ 𝑌 ∈ 𝑈 ) → ( 𝑋 / 𝑌 ) = ( 𝑋 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ) ) |
8 |
4 7
|
sylan |
⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) → ( 𝑋 / 𝑌 ) = ( 𝑋 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ) ) |
9 |
8
|
3adant1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) → ( 𝑋 / 𝑌 ) = ( 𝑋 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ) ) |
10 |
1 6
|
unitinvcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝑈 ) → ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ∈ 𝑈 ) |
11 |
10
|
3adant2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) → ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ∈ 𝑈 ) |
12 |
1 5
|
unitmulcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ∈ 𝑈 ) → ( 𝑋 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ) ∈ 𝑈 ) |
13 |
11 12
|
syld3an3 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) → ( 𝑋 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ) ∈ 𝑈 ) |
14 |
9 13
|
eqeltrd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) → ( 𝑋 / 𝑌 ) ∈ 𝑈 ) |