Metamath Proof Explorer


Theorem pws1

Description: Value of the ring unit in a structure power. (Contributed by Mario Carneiro, 11-Mar-2015)

Ref Expression
Hypotheses pws1.y Y = R 𝑠 I
pws1.o 1 ˙ = 1 R
Assertion pws1 R Ring I V I × 1 ˙ = 1 Y

Proof

Step Hyp Ref Expression
1 pws1.y Y = R 𝑠 I
2 pws1.o 1 ˙ = 1 R
3 eqid Scalar R = Scalar R
4 1 3 pwsval R Ring I V Y = Scalar R 𝑠 I × R
5 4 fveq2d R Ring I V 1 Y = 1 Scalar R 𝑠 I × R
6 eqid Scalar R 𝑠 I × R = Scalar R 𝑠 I × R
7 simpr R Ring I V I V
8 fvexd R Ring I V Scalar R V
9 fconst6g R Ring I × R : I Ring
10 9 adantr R Ring I V I × R : I Ring
11 6 7 8 10 prds1 R Ring I V 1 r I × R = 1 Scalar R 𝑠 I × R
12 fn0g 0 𝑔 Fn V
13 fnmgp mulGrp Fn V
14 ssv ran mulGrp V
15 14 a1i R Ring I V ran mulGrp V
16 fnco 0 𝑔 Fn V mulGrp Fn V ran mulGrp V 0 𝑔 mulGrp Fn V
17 12 13 15 16 mp3an12i R Ring I V 0 𝑔 mulGrp Fn V
18 df-ur 1 r = 0 𝑔 mulGrp
19 18 fneq1i 1 r Fn V 0 𝑔 mulGrp Fn V
20 17 19 sylibr R Ring I V 1 r Fn V
21 elex R Ring R V
22 21 adantr R Ring I V R V
23 fcoconst 1 r Fn V R V 1 r I × R = I × 1 R
24 20 22 23 syl2anc R Ring I V 1 r I × R = I × 1 R
25 2 sneqi 1 ˙ = 1 R
26 25 xpeq2i I × 1 ˙ = I × 1 R
27 24 26 eqtr4di R Ring I V 1 r I × R = I × 1 ˙
28 5 11 27 3eqtr2rd R Ring I V I × 1 ˙ = 1 Y