Metamath Proof Explorer


Theorem fn0g

Description: The group zero extractor is a function. (Contributed by Stefan O'Rear, 10-Jan-2015)

Ref Expression
Assertion fn0g 0𝑔FnV

Proof

Step Hyp Ref Expression
1 iotaex ιe|eBasegxBasege+gx=xx+ge=xV
2 df-0g 0𝑔=gVιe|eBasegxBasege+gx=xx+ge=x
3 1 2 fnmpti 0𝑔FnV