Metamath Proof Explorer


Definition df-0g

Description: Define group identity element. Remark: this definition is required here because the symbol 0g is already used in df-gsum . The related theorems are provided later, see grpidval . (Contributed by NM, 20-Aug-2011)

Ref Expression
Assertion df-0g 0𝑔=gVιe|eBasegxBasege+gx=xx+ge=x

Detailed syntax breakdown

Step Hyp Ref Expression
0 c0g class0𝑔
1 vg setvarg
2 cvv classV
3 ve setvare
4 3 cv setvare
5 cbs classBase
6 1 cv setvarg
7 6 5 cfv classBaseg
8 4 7 wcel wffeBaseg
9 vx setvarx
10 cplusg class+𝑔
11 6 10 cfv class+g
12 9 cv setvarx
13 4 12 11 co classe+gx
14 13 12 wceq wffe+gx=x
15 12 4 11 co classx+ge
16 15 12 wceq wffx+ge=x
17 14 16 wa wffe+gx=xx+ge=x
18 17 9 7 wral wffxBasege+gx=xx+ge=x
19 8 18 wa wffeBasegxBasege+gx=xx+ge=x
20 19 3 cio classιe|eBasegxBasege+gx=xx+ge=x
21 1 2 20 cmpt classgVιe|eBasegxBasege+gx=xx+ge=x
22 0 21 wceq wff0𝑔=gVιe|eBasegxBasege+gx=xx+ge=x