Step |
Hyp |
Ref |
Expression |
0 |
|
c0g |
|- 0g |
1 |
|
vg |
|- g |
2 |
|
cvv |
|- _V |
3 |
|
ve |
|- e |
4 |
3
|
cv |
|- e |
5 |
|
cbs |
|- Base |
6 |
1
|
cv |
|- g |
7 |
6 5
|
cfv |
|- ( Base ` g ) |
8 |
4 7
|
wcel |
|- e e. ( Base ` g ) |
9 |
|
vx |
|- x |
10 |
|
cplusg |
|- +g |
11 |
6 10
|
cfv |
|- ( +g ` g ) |
12 |
9
|
cv |
|- x |
13 |
4 12 11
|
co |
|- ( e ( +g ` g ) x ) |
14 |
13 12
|
wceq |
|- ( e ( +g ` g ) x ) = x |
15 |
12 4 11
|
co |
|- ( x ( +g ` g ) e ) |
16 |
15 12
|
wceq |
|- ( x ( +g ` g ) e ) = x |
17 |
14 16
|
wa |
|- ( ( e ( +g ` g ) x ) = x /\ ( x ( +g ` g ) e ) = x ) |
18 |
17 9 7
|
wral |
|- A. x e. ( Base ` g ) ( ( e ( +g ` g ) x ) = x /\ ( x ( +g ` g ) e ) = x ) |
19 |
8 18
|
wa |
|- ( e e. ( Base ` g ) /\ A. x e. ( Base ` g ) ( ( e ( +g ` g ) x ) = x /\ ( x ( +g ` g ) e ) = x ) ) |
20 |
19 3
|
cio |
|- ( iota e ( e e. ( Base ` g ) /\ A. x e. ( Base ` g ) ( ( e ( +g ` g ) x ) = x /\ ( x ( +g ` g ) e ) = x ) ) ) |
21 |
1 2 20
|
cmpt |
|- ( g e. _V |-> ( iota e ( e e. ( Base ` g ) /\ A. x e. ( Base ` g ) ( ( e ( +g ` g ) x ) = x /\ ( x ( +g ` g ) e ) = x ) ) ) ) |
22 |
0 21
|
wceq |
|- 0g = ( g e. _V |-> ( iota e ( e e. ( Base ` g ) /\ A. x e. ( Base ` g ) ( ( e ( +g ` g ) x ) = x /\ ( x ( +g ` g ) e ) = x ) ) ) ) |