Metamath Proof Explorer


Definition df-0g

Description: Define group identity element. Remark: this definition is required here because the symbol 0g is already used in df-gsum . The related theorems are provided later, see grpidval . (Contributed by NM, 20-Aug-2011)

Ref Expression
Assertion df-0g
|- 0g = ( g e. _V |-> ( iota e ( e e. ( Base ` g ) /\ A. x e. ( Base ` g ) ( ( e ( +g ` g ) x ) = x /\ ( x ( +g ` g ) e ) = x ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 c0g
 |-  0g
1 vg
 |-  g
2 cvv
 |-  _V
3 ve
 |-  e
4 3 cv
 |-  e
5 cbs
 |-  Base
6 1 cv
 |-  g
7 6 5 cfv
 |-  ( Base ` g )
8 4 7 wcel
 |-  e e. ( Base ` g )
9 vx
 |-  x
10 cplusg
 |-  +g
11 6 10 cfv
 |-  ( +g ` g )
12 9 cv
 |-  x
13 4 12 11 co
 |-  ( e ( +g ` g ) x )
14 13 12 wceq
 |-  ( e ( +g ` g ) x ) = x
15 12 4 11 co
 |-  ( x ( +g ` g ) e )
16 15 12 wceq
 |-  ( x ( +g ` g ) e ) = x
17 14 16 wa
 |-  ( ( e ( +g ` g ) x ) = x /\ ( x ( +g ` g ) e ) = x )
18 17 9 7 wral
 |-  A. x e. ( Base ` g ) ( ( e ( +g ` g ) x ) = x /\ ( x ( +g ` g ) e ) = x )
19 8 18 wa
 |-  ( e e. ( Base ` g ) /\ A. x e. ( Base ` g ) ( ( e ( +g ` g ) x ) = x /\ ( x ( +g ` g ) e ) = x ) )
20 19 3 cio
 |-  ( iota e ( e e. ( Base ` g ) /\ A. x e. ( Base ` g ) ( ( e ( +g ` g ) x ) = x /\ ( x ( +g ` g ) e ) = x ) ) )
21 1 2 20 cmpt
 |-  ( g e. _V |-> ( iota e ( e e. ( Base ` g ) /\ A. x e. ( Base ` g ) ( ( e ( +g ` g ) x ) = x /\ ( x ( +g ` g ) e ) = x ) ) ) )
22 0 21 wceq
 |-  0g = ( g e. _V |-> ( iota e ( e e. ( Base ` g ) /\ A. x e. ( Base ` g ) ( ( e ( +g ` g ) x ) = x /\ ( x ( +g ` g ) e ) = x ) ) ) )