Description: The group zero extractor is a function. (Contributed by Stefan O'Rear, 10-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | fn0g | |- 0g Fn _V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iotaex | |- ( iota e ( e e. ( Base ` g ) /\ A. x e. ( Base ` g ) ( ( e ( +g ` g ) x ) = x /\ ( x ( +g ` g ) e ) = x ) ) ) e. _V |
|
2 | df-0g | |- 0g = ( g e. _V |-> ( iota e ( e e. ( Base ` g ) /\ A. x e. ( Base ` g ) ( ( e ( +g ` g ) x ) = x /\ ( x ( +g ` g ) e ) = x ) ) ) ) |
|
3 | 1 2 | fnmpti | |- 0g Fn _V |