Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
fcoconst
Next ⟩
fsn
Metamath Proof Explorer
Ascii
Unicode
Theorem
fcoconst
Description:
Composition with a constant function.
(Contributed by
Stefan O'Rear
, 11-Mar-2015)
Ref
Expression
Assertion
fcoconst
⊢
F
Fn
X
∧
Y
∈
X
→
F
∘
I
×
Y
=
I
×
F
⁡
Y
Proof
Step
Hyp
Ref
Expression
1
simplr
⊢
F
Fn
X
∧
Y
∈
X
∧
x
∈
I
→
Y
∈
X
2
fconstmpt
⊢
I
×
Y
=
x
∈
I
⟼
Y
3
2
a1i
⊢
F
Fn
X
∧
Y
∈
X
→
I
×
Y
=
x
∈
I
⟼
Y
4
simpl
⊢
F
Fn
X
∧
Y
∈
X
→
F
Fn
X
5
dffn2
⊢
F
Fn
X
↔
F
:
X
⟶
V
6
4
5
sylib
⊢
F
Fn
X
∧
Y
∈
X
→
F
:
X
⟶
V
7
6
feqmptd
⊢
F
Fn
X
∧
Y
∈
X
→
F
=
y
∈
X
⟼
F
⁡
y
8
fveq2
⊢
y
=
Y
→
F
⁡
y
=
F
⁡
Y
9
1
3
7
8
fmptco
⊢
F
Fn
X
∧
Y
∈
X
→
F
∘
I
×
Y
=
x
∈
I
⟼
F
⁡
Y
10
fconstmpt
⊢
I
×
F
⁡
Y
=
x
∈
I
⟼
F
⁡
Y
11
9
10
eqtr4di
⊢
F
Fn
X
∧
Y
∈
X
→
F
∘
I
×
Y
=
I
×
F
⁡
Y