Metamath Proof Explorer


Theorem fcoconst

Description: Composition with a constant function. (Contributed by Stefan O'Rear, 11-Mar-2015)

Ref Expression
Assertion fcoconst F Fn X Y X F I × Y = I × F Y

Proof

Step Hyp Ref Expression
1 simplr F Fn X Y X x I Y X
2 fconstmpt I × Y = x I Y
3 2 a1i F Fn X Y X I × Y = x I Y
4 simpl F Fn X Y X F Fn X
5 dffn2 F Fn X F : X V
6 4 5 sylib F Fn X Y X F : X V
7 6 feqmptd F Fn X Y X F = y X F y
8 fveq2 y = Y F y = F Y
9 1 3 7 8 fmptco F Fn X Y X F I × Y = x I F Y
10 fconstmpt I × F Y = x I F Y
11 9 10 eqtr4di F Fn X Y X F I × Y = I × F Y