| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							simplr | 
							 |-  ( ( ( F Fn X /\ Y e. X ) /\ x e. I ) -> Y e. X )  | 
						
						
							| 2 | 
							
								
							 | 
							fconstmpt | 
							 |-  ( I X. { Y } ) = ( x e. I |-> Y ) | 
						
						
							| 3 | 
							
								2
							 | 
							a1i | 
							 |-  ( ( F Fn X /\ Y e. X ) -> ( I X. { Y } ) = ( x e. I |-> Y ) ) | 
						
						
							| 4 | 
							
								
							 | 
							simpl | 
							 |-  ( ( F Fn X /\ Y e. X ) -> F Fn X )  | 
						
						
							| 5 | 
							
								
							 | 
							dffn2 | 
							 |-  ( F Fn X <-> F : X --> _V )  | 
						
						
							| 6 | 
							
								4 5
							 | 
							sylib | 
							 |-  ( ( F Fn X /\ Y e. X ) -> F : X --> _V )  | 
						
						
							| 7 | 
							
								6
							 | 
							feqmptd | 
							 |-  ( ( F Fn X /\ Y e. X ) -> F = ( y e. X |-> ( F ` y ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							fveq2 | 
							 |-  ( y = Y -> ( F ` y ) = ( F ` Y ) )  | 
						
						
							| 9 | 
							
								1 3 7 8
							 | 
							fmptco | 
							 |-  ( ( F Fn X /\ Y e. X ) -> ( F o. ( I X. { Y } ) ) = ( x e. I |-> ( F ` Y ) ) ) | 
						
						
							| 10 | 
							
								
							 | 
							fconstmpt | 
							 |-  ( I X. { ( F ` Y ) } ) = ( x e. I |-> ( F ` Y ) ) | 
						
						
							| 11 | 
							
								9 10
							 | 
							eqtr4di | 
							 |-  ( ( F Fn X /\ Y e. X ) -> ( F o. ( I X. { Y } ) ) = ( I X. { ( F ` Y ) } ) ) |