Step |
Hyp |
Ref |
Expression |
1 |
|
fmptco.1 |
|
2 |
|
fmptco.2 |
|
3 |
|
fmptco.3 |
|
4 |
|
fmptco.4 |
|
5 |
|
relco |
|
6 |
|
mptrel |
|
7 |
2 1
|
fmpt3d |
|
8 |
7
|
ffund |
|
9 |
|
funbrfv |
|
10 |
9
|
imp |
|
11 |
8 10
|
sylan |
|
12 |
11
|
eqcomd |
|
13 |
12
|
a1d |
|
14 |
13
|
expimpd |
|
15 |
14
|
pm4.71rd |
|
16 |
15
|
exbidv |
|
17 |
|
fvex |
|
18 |
|
breq2 |
|
19 |
|
breq1 |
|
20 |
18 19
|
anbi12d |
|
21 |
17 20
|
ceqsexv |
|
22 |
|
funfvbrb |
|
23 |
8 22
|
syl |
|
24 |
7
|
fdmd |
|
25 |
24
|
eleq2d |
|
26 |
23 25
|
bitr3d |
|
27 |
2
|
fveq1d |
|
28 |
|
eqidd |
|
29 |
27 3 28
|
breq123d |
|
30 |
26 29
|
anbi12d |
|
31 |
|
nfcv |
|
32 |
|
nfv |
|
33 |
|
nffvmpt1 |
|
34 |
|
nfcv |
|
35 |
|
nfcv |
|
36 |
33 34 35
|
nfbr |
|
37 |
|
nfcsb1v |
|
38 |
37
|
nfeq2 |
|
39 |
36 38
|
nfbi |
|
40 |
32 39
|
nfim |
|
41 |
|
fveq2 |
|
42 |
41
|
breq1d |
|
43 |
|
csbeq1a |
|
44 |
43
|
eqeq2d |
|
45 |
42 44
|
bibi12d |
|
46 |
45
|
imbi2d |
|
47 |
|
vex |
|
48 |
|
simpl |
|
49 |
48
|
eleq1d |
|
50 |
|
id |
|
51 |
50 4
|
eqeqan12rd |
|
52 |
49 51
|
anbi12d |
|
53 |
|
df-mpt |
|
54 |
52 53
|
brabga |
|
55 |
1 47 54
|
sylancl |
|
56 |
|
id |
|
57 |
|
eqid |
|
58 |
57
|
fvmpt2 |
|
59 |
56 1 58
|
syl2an2 |
|
60 |
59
|
breq1d |
|
61 |
1
|
biantrurd |
|
62 |
55 60 61
|
3bitr4d |
|
63 |
62
|
expcom |
|
64 |
31 40 46 63
|
vtoclgaf |
|
65 |
64
|
impcom |
|
66 |
65
|
pm5.32da |
|
67 |
30 66
|
bitrd |
|
68 |
21 67
|
bitrid |
|
69 |
16 68
|
bitrd |
|
70 |
|
vex |
|
71 |
70 47
|
opelco |
|
72 |
|
df-mpt |
|
73 |
72
|
eleq2i |
|
74 |
|
nfv |
|
75 |
37
|
nfeq2 |
|
76 |
74 75
|
nfan |
|
77 |
|
nfv |
|
78 |
|
eleq1w |
|
79 |
43
|
eqeq2d |
|
80 |
78 79
|
anbi12d |
|
81 |
|
eqeq1 |
|
82 |
81
|
anbi2d |
|
83 |
76 77 70 47 80 82
|
opelopabf |
|
84 |
73 83
|
bitri |
|
85 |
69 71 84
|
3bitr4g |
|
86 |
5 6 85
|
eqrelrdv |
|