Metamath Proof Explorer


Theorem fmptco

Description: Composition of two functions expressed as ordered-pair class abstractions. If F has the equation ( x + 2 ) and G the equation ( 3 * z ) then ( G o. F ) has the equation ( 3 * ( x + 2 ) ) . (Contributed by FL, 21-Jun-2012) (Revised by Mario Carneiro, 24-Jul-2014)

Ref Expression
Hypotheses fmptco.1 φ x A R B
fmptco.2 φ F = x A R
fmptco.3 φ G = y B S
fmptco.4 y = R S = T
Assertion fmptco φ G F = x A T

Proof

Step Hyp Ref Expression
1 fmptco.1 φ x A R B
2 fmptco.2 φ F = x A R
3 fmptco.3 φ G = y B S
4 fmptco.4 y = R S = T
5 relco Rel G F
6 mptrel Rel x A T
7 2 1 fmpt3d φ F : A B
8 7 ffund φ Fun F
9 funbrfv Fun F z F u F z = u
10 9 imp Fun F z F u F z = u
11 8 10 sylan φ z F u F z = u
12 11 eqcomd φ z F u u = F z
13 12 a1d φ z F u u G w u = F z
14 13 expimpd φ z F u u G w u = F z
15 14 pm4.71rd φ z F u u G w u = F z z F u u G w
16 15 exbidv φ u z F u u G w u u = F z z F u u G w
17 fvex F z V
18 breq2 u = F z z F u z F F z
19 breq1 u = F z u G w F z G w
20 18 19 anbi12d u = F z z F u u G w z F F z F z G w
21 17 20 ceqsexv u u = F z z F u u G w z F F z F z G w
22 funfvbrb Fun F z dom F z F F z
23 8 22 syl φ z dom F z F F z
24 7 fdmd φ dom F = A
25 24 eleq2d φ z dom F z A
26 23 25 bitr3d φ z F F z z A
27 2 fveq1d φ F z = x A R z
28 eqidd φ w = w
29 27 3 28 breq123d φ F z G w x A R z y B S w
30 26 29 anbi12d φ z F F z F z G w z A x A R z y B S w
31 nfcv _ x z
32 nfv x φ
33 nffvmpt1 _ x x A R z
34 nfcv _ x y B S
35 nfcv _ x w
36 33 34 35 nfbr x x A R z y B S w
37 nfcsb1v _ x z / x T
38 37 nfeq2 x w = z / x T
39 36 38 nfbi x x A R z y B S w w = z / x T
40 32 39 nfim x φ x A R z y B S w w = z / x T
41 fveq2 x = z x A R x = x A R z
42 41 breq1d x = z x A R x y B S w x A R z y B S w
43 csbeq1a x = z T = z / x T
44 43 eqeq2d x = z w = T w = z / x T
45 42 44 bibi12d x = z x A R x y B S w w = T x A R z y B S w w = z / x T
46 45 imbi2d x = z φ x A R x y B S w w = T φ x A R z y B S w w = z / x T
47 vex w V
48 simpl y = R u = w y = R
49 48 eleq1d y = R u = w y B R B
50 id u = w u = w
51 50 4 eqeqan12rd y = R u = w u = S w = T
52 49 51 anbi12d y = R u = w y B u = S R B w = T
53 df-mpt y B S = y u | y B u = S
54 52 53 brabga R B w V R y B S w R B w = T
55 1 47 54 sylancl φ x A R y B S w R B w = T
56 id x A x A
57 eqid x A R = x A R
58 57 fvmpt2 x A R B x A R x = R
59 56 1 58 syl2an2 φ x A x A R x = R
60 59 breq1d φ x A x A R x y B S w R y B S w
61 1 biantrurd φ x A w = T R B w = T
62 55 60 61 3bitr4d φ x A x A R x y B S w w = T
63 62 expcom x A φ x A R x y B S w w = T
64 31 40 46 63 vtoclgaf z A φ x A R z y B S w w = z / x T
65 64 impcom φ z A x A R z y B S w w = z / x T
66 65 pm5.32da φ z A x A R z y B S w z A w = z / x T
67 30 66 bitrd φ z F F z F z G w z A w = z / x T
68 21 67 bitrid φ u u = F z z F u u G w z A w = z / x T
69 16 68 bitrd φ u z F u u G w z A w = z / x T
70 vex z V
71 70 47 opelco z w G F u z F u u G w
72 df-mpt x A T = x v | x A v = T
73 72 eleq2i z w x A T z w x v | x A v = T
74 nfv x z A
75 37 nfeq2 x v = z / x T
76 74 75 nfan x z A v = z / x T
77 nfv v z A w = z / x T
78 eleq1w x = z x A z A
79 43 eqeq2d x = z v = T v = z / x T
80 78 79 anbi12d x = z x A v = T z A v = z / x T
81 eqeq1 v = w v = z / x T w = z / x T
82 81 anbi2d v = w z A v = z / x T z A w = z / x T
83 76 77 70 47 80 82 opelopabf z w x v | x A v = T z A w = z / x T
84 73 83 bitri z w x A T z A w = z / x T
85 69 71 84 3bitr4g φ z w G F z w x A T
86 5 6 85 eqrelrdv φ G F = x A T