Metamath Proof Explorer


Theorem opelopabf

Description: The law of concretion. Theorem 9.5 of Quine p. 61. This version of opelopab uses bound-variable hypotheses in place of distinct variable conditions. (Contributed by NM, 19-Dec-2008)

Ref Expression
Hypotheses opelopabf.x x ψ
opelopabf.y y χ
opelopabf.1 A V
opelopabf.2 B V
opelopabf.3 x = A φ ψ
opelopabf.4 y = B ψ χ
Assertion opelopabf A B x y | φ χ

Proof

Step Hyp Ref Expression
1 opelopabf.x x ψ
2 opelopabf.y y χ
3 opelopabf.1 A V
4 opelopabf.2 B V
5 opelopabf.3 x = A φ ψ
6 opelopabf.4 y = B ψ χ
7 opelopabsb A B x y | φ [˙A / x]˙ [˙B / y]˙ φ
8 nfcv _ x B
9 8 1 nfsbcw x [˙B / y]˙ ψ
10 5 sbcbidv x = A [˙B / y]˙ φ [˙B / y]˙ ψ
11 9 10 sbciegf A V [˙A / x]˙ [˙B / y]˙ φ [˙B / y]˙ ψ
12 3 11 ax-mp [˙A / x]˙ [˙B / y]˙ φ [˙B / y]˙ ψ
13 2 6 sbciegf B V [˙B / y]˙ ψ χ
14 4 13 ax-mp [˙B / y]˙ ψ χ
15 7 12 14 3bitri A B x y | φ χ