Metamath Proof Explorer


Theorem nfsbcw

Description: Bound-variable hypothesis builder for class substitution. Version of nfsbc with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 7-Sep-2014) Avoid ax-13 . (Revised by Gino Giotto, 10-Jan-2024)

Ref Expression
Hypotheses nfsbcw.1 _xA
nfsbcw.2 xφ
Assertion nfsbcw x[˙A/y]˙φ

Proof

Step Hyp Ref Expression
1 nfsbcw.1 _xA
2 nfsbcw.2 xφ
3 nftru y
4 1 a1i _xA
5 2 a1i xφ
6 3 4 5 nfsbcdw x[˙A/y]˙φ
7 6 mptru x[˙A/y]˙φ