Metamath Proof Explorer


Theorem nfsbcw

Description: Bound-variable hypothesis builder for class substitution. Version of nfsbc with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 7-Sep-2014) (Revised by Gino Giotto, 10-Jan-2024)

Ref Expression
Hypotheses nfsbcw.1
|- F/_ x A
nfsbcw.2
|- F/ x ph
Assertion nfsbcw
|- F/ x [. A / y ]. ph

Proof

Step Hyp Ref Expression
1 nfsbcw.1
 |-  F/_ x A
2 nfsbcw.2
 |-  F/ x ph
3 nftru
 |-  F/ y T.
4 1 a1i
 |-  ( T. -> F/_ x A )
5 2 a1i
 |-  ( T. -> F/ x ph )
6 3 4 5 nfsbcdw
 |-  ( T. -> F/ x [. A / y ]. ph )
7 6 mptru
 |-  F/ x [. A / y ]. ph