Metamath Proof Explorer


Theorem nfsbc

Description: Bound-variable hypothesis builder for class substitution. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker nfsbcw when possible. (Contributed by NM, 7-Sep-2014) (Revised by Mario Carneiro, 12-Oct-2016) (New usage is discouraged.)

Ref Expression
Hypotheses nfsbc.1 _ x A
nfsbc.2 x φ
Assertion nfsbc x [˙A / y]˙ φ

Proof

Step Hyp Ref Expression
1 nfsbc.1 _ x A
2 nfsbc.2 x φ
3 nftru y
4 1 a1i _ x A
5 2 a1i x φ
6 3 4 5 nfsbcd x [˙A / y]˙ φ
7 6 mptru x [˙A / y]˙ φ