Metamath Proof Explorer


Theorem nfsbcd

Description: Deduction version of nfsbc . Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker nfsbcdw when possible. (Contributed by NM, 23-Nov-2005) (Revised by Mario Carneiro, 12-Oct-2016) (New usage is discouraged.)

Ref Expression
Hypotheses nfsbcd.1 yφ
nfsbcd.2 φ_xA
nfsbcd.3 φxψ
Assertion nfsbcd φx[˙A/y]˙ψ

Proof

Step Hyp Ref Expression
1 nfsbcd.1 yφ
2 nfsbcd.2 φ_xA
3 nfsbcd.3 φxψ
4 df-sbc [˙A/y]˙ψAy|ψ
5 1 3 nfabd φ_xy|ψ
6 2 5 nfeld φxAy|ψ
7 4 6 nfxfrd φx[˙A/y]˙ψ