Metamath Proof Explorer


Theorem sbccow

Description: A composition law for class substitution. Version of sbcco with a disjoint variable condition, which requires fewer axioms. (Contributed by NM, 26-Sep-2003) (Revised by Gino Giotto, 10-Jan-2024)

Ref Expression
Assertion sbccow [˙A / y]˙ [˙y / x]˙ φ [˙A / x]˙ φ

Proof

Step Hyp Ref Expression
1 sbcex [˙A / y]˙ [˙y / x]˙ φ A V
2 sbcex [˙A / x]˙ φ A V
3 dfsbcq z = A [˙z / y]˙ [˙y / x]˙ φ [˙A / y]˙ [˙y / x]˙ φ
4 dfsbcq z = A [˙z / x]˙ φ [˙A / x]˙ φ
5 sbsbc y x φ [˙y / x]˙ φ
6 5 sbbii z y y x φ z y [˙y / x]˙ φ
7 sbco2vv z y y x φ z x φ
8 sbsbc z y [˙y / x]˙ φ [˙z / y]˙ [˙y / x]˙ φ
9 6 7 8 3bitr3ri [˙z / y]˙ [˙y / x]˙ φ z x φ
10 sbsbc z x φ [˙z / x]˙ φ
11 9 10 bitri [˙z / y]˙ [˙y / x]˙ φ [˙z / x]˙ φ
12 3 4 11 vtoclbg A V [˙A / y]˙ [˙y / x]˙ φ [˙A / x]˙ φ
13 1 2 12 pm5.21nii [˙A / y]˙ [˙y / x]˙ φ [˙A / x]˙ φ