Metamath Proof Explorer


Theorem brabga

Description: The law of concretion for a binary relation. (Contributed by Mario Carneiro, 19-Dec-2013)

Ref Expression
Hypotheses opelopabga.1 x = A y = B φ ψ
brabga.2 R = x y | φ
Assertion brabga A V B W A R B ψ

Proof

Step Hyp Ref Expression
1 opelopabga.1 x = A y = B φ ψ
2 brabga.2 R = x y | φ
3 df-br A R B A B R
4 2 eleq2i A B R A B x y | φ
5 3 4 bitri A R B A B x y | φ
6 1 opelopabga A V B W A B x y | φ ψ
7 5 6 bitrid A V B W A R B ψ