Metamath Proof Explorer


Theorem funfvbrb

Description: Two ways to say that A is in the domain of F . (Contributed by Mario Carneiro, 1-May-2014)

Ref Expression
Assertion funfvbrb FunFAdomFAFFA

Proof

Step Hyp Ref Expression
1 funfvop FunFAdomFAFAF
2 df-br AFFAAFAF
3 1 2 sylibr FunFAdomFAFFA
4 funrel FunFRelF
5 releldm RelFAFFAAdomF
6 4 5 sylan FunFAFFAAdomF
7 3 6 impbida FunFAdomFAFFA