Metamath Proof Explorer


Theorem eqrelrdv

Description: Deduce equality of relations from equivalence of membership. (Contributed by Rodolfo Medina, 10-Oct-2010)

Ref Expression
Hypotheses eqrelrdv.1 RelA
eqrelrdv.2 RelB
eqrelrdv.3 φxyAxyB
Assertion eqrelrdv φA=B

Proof

Step Hyp Ref Expression
1 eqrelrdv.1 RelA
2 eqrelrdv.2 RelB
3 eqrelrdv.3 φxyAxyB
4 3 alrimivv φxyxyAxyB
5 eqrel RelARelBA=BxyxyAxyB
6 1 2 5 mp2an A=BxyxyAxyB
7 4 6 sylibr φA=B