Metamath Proof Explorer


Theorem eqrelrdv

Description: Deduce equality of relations from equivalence of membership. (Contributed by Rodolfo Medina, 10-Oct-2010)

Ref Expression
Hypotheses eqrelrdv.1 Rel 𝐴
eqrelrdv.2 Rel 𝐵
eqrelrdv.3 ( 𝜑 → ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 ↔ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐵 ) )
Assertion eqrelrdv ( 𝜑𝐴 = 𝐵 )

Proof

Step Hyp Ref Expression
1 eqrelrdv.1 Rel 𝐴
2 eqrelrdv.2 Rel 𝐵
3 eqrelrdv.3 ( 𝜑 → ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 ↔ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐵 ) )
4 3 alrimivv ( 𝜑 → ∀ 𝑥𝑦 ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 ↔ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐵 ) )
5 eqrel ( ( Rel 𝐴 ∧ Rel 𝐵 ) → ( 𝐴 = 𝐵 ↔ ∀ 𝑥𝑦 ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 ↔ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐵 ) ) )
6 1 2 5 mp2an ( 𝐴 = 𝐵 ↔ ∀ 𝑥𝑦 ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 ↔ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐵 ) )
7 4 6 sylibr ( 𝜑𝐴 = 𝐵 )