Metamath Proof Explorer


Theorem eqrelrdv

Description: Deduce equality of relations from equivalence of membership. (Contributed by Rodolfo Medina, 10-Oct-2010)

Ref Expression
Hypotheses eqrelrdv.1
|- Rel A
eqrelrdv.2
|- Rel B
eqrelrdv.3
|- ( ph -> ( <. x , y >. e. A <-> <. x , y >. e. B ) )
Assertion eqrelrdv
|- ( ph -> A = B )

Proof

Step Hyp Ref Expression
1 eqrelrdv.1
 |-  Rel A
2 eqrelrdv.2
 |-  Rel B
3 eqrelrdv.3
 |-  ( ph -> ( <. x , y >. e. A <-> <. x , y >. e. B ) )
4 3 alrimivv
 |-  ( ph -> A. x A. y ( <. x , y >. e. A <-> <. x , y >. e. B ) )
5 eqrel
 |-  ( ( Rel A /\ Rel B ) -> ( A = B <-> A. x A. y ( <. x , y >. e. A <-> <. x , y >. e. B ) ) )
6 1 2 5 mp2an
 |-  ( A = B <-> A. x A. y ( <. x , y >. e. A <-> <. x , y >. e. B ) )
7 4 6 sylibr
 |-  ( ph -> A = B )