Metamath Proof Explorer


Theorem eqrel

Description: Extensionality principle for relations. Theorem 3.2(ii) of Monk1 p. 33. (Contributed by NM, 2-Aug-1994)

Ref Expression
Assertion eqrel RelARelBA=BxyxyAxyB

Proof

Step Hyp Ref Expression
1 ssrel RelAABxyxyAxyB
2 ssrel RelBBAxyxyBxyA
3 1 2 bi2anan9 RelARelBABBAxyxyAxyBxyxyBxyA
4 eqss A=BABBA
5 2albiim xyxyAxyBxyxyAxyBxyxyBxyA
6 3 4 5 3bitr4g RelARelBA=BxyxyAxyB