Metamath Proof Explorer


Theorem 2albiim

Description: Split a biconditional and distribute two quantifiers. (Contributed by NM, 3-Feb-2005)

Ref Expression
Assertion 2albiim xyφψxyφψxyψφ

Proof

Step Hyp Ref Expression
1 albiim yφψyφψyψφ
2 1 albii xyφψxyφψyψφ
3 19.26 xyφψyψφxyφψxyψφ
4 2 3 bitri xyφψxyφψxyψφ