Metamath Proof Explorer


Theorem ssrel2

Description: A subclass relationship depends only on a relation's ordered pairs. This version of ssrel is restricted to the relation's domain. (Contributed by Thierry Arnoux, 25-Jan-2018)

Ref Expression
Assertion ssrel2 RA×BRSxAyBxyRxyS

Proof

Step Hyp Ref Expression
1 ssel RSxyRxyS
2 1 a1d RSxAyBxyRxyS
3 2 ralrimivv RSxAyBxyRxyS
4 eleq1 z=xyzRxyR
5 eleq1 z=xyzSxyS
6 4 5 imbi12d z=xyzRzSxyRxyS
7 6 biimprcd xyRxySz=xyzRzS
8 7 2ralimi xAyBxyRxySxAyBz=xyzRzS
9 r19.23v yBz=xyzRzSyBz=xyzRzS
10 9 ralbii xAyBz=xyzRzSxAyBz=xyzRzS
11 r19.23v xAyBz=xyzRzSxAyBz=xyzRzS
12 10 11 bitri xAyBz=xyzRzSxAyBz=xyzRzS
13 8 12 sylib xAyBxyRxySxAyBz=xyzRzS
14 13 com23 xAyBxyRxySzRxAyBz=xyzS
15 14 a2d xAyBxyRxySzRxAyBz=xyzRzS
16 15 alimdv xAyBxyRxySzzRxAyBz=xyzzRzS
17 dfss2 RA×BzzRzA×B
18 elxp2 zA×BxAyBz=xy
19 18 imbi2i zRzA×BzRxAyBz=xy
20 19 albii zzRzA×BzzRxAyBz=xy
21 17 20 bitri RA×BzzRxAyBz=xy
22 dfss2 RSzzRzS
23 16 21 22 3imtr4g xAyBxyRxySRA×BRS
24 23 com12 RA×BxAyBxyRxySRS
25 3 24 impbid2 RA×BRSxAyBxyRxyS