| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pws1.y |
|- Y = ( R ^s I ) |
| 2 |
|
pws1.o |
|- .1. = ( 1r ` R ) |
| 3 |
|
eqid |
|- ( Scalar ` R ) = ( Scalar ` R ) |
| 4 |
1 3
|
pwsval |
|- ( ( R e. Ring /\ I e. V ) -> Y = ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) |
| 5 |
4
|
fveq2d |
|- ( ( R e. Ring /\ I e. V ) -> ( 1r ` Y ) = ( 1r ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) ) |
| 6 |
|
eqid |
|- ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) = ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) |
| 7 |
|
simpr |
|- ( ( R e. Ring /\ I e. V ) -> I e. V ) |
| 8 |
|
fvexd |
|- ( ( R e. Ring /\ I e. V ) -> ( Scalar ` R ) e. _V ) |
| 9 |
|
fconst6g |
|- ( R e. Ring -> ( I X. { R } ) : I --> Ring ) |
| 10 |
9
|
adantr |
|- ( ( R e. Ring /\ I e. V ) -> ( I X. { R } ) : I --> Ring ) |
| 11 |
6 7 8 10
|
prds1 |
|- ( ( R e. Ring /\ I e. V ) -> ( 1r o. ( I X. { R } ) ) = ( 1r ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) ) |
| 12 |
|
fn0g |
|- 0g Fn _V |
| 13 |
|
fnmgp |
|- mulGrp Fn _V |
| 14 |
|
ssv |
|- ran mulGrp C_ _V |
| 15 |
14
|
a1i |
|- ( ( R e. Ring /\ I e. V ) -> ran mulGrp C_ _V ) |
| 16 |
|
fnco |
|- ( ( 0g Fn _V /\ mulGrp Fn _V /\ ran mulGrp C_ _V ) -> ( 0g o. mulGrp ) Fn _V ) |
| 17 |
12 13 15 16
|
mp3an12i |
|- ( ( R e. Ring /\ I e. V ) -> ( 0g o. mulGrp ) Fn _V ) |
| 18 |
|
df-ur |
|- 1r = ( 0g o. mulGrp ) |
| 19 |
18
|
fneq1i |
|- ( 1r Fn _V <-> ( 0g o. mulGrp ) Fn _V ) |
| 20 |
17 19
|
sylibr |
|- ( ( R e. Ring /\ I e. V ) -> 1r Fn _V ) |
| 21 |
|
elex |
|- ( R e. Ring -> R e. _V ) |
| 22 |
21
|
adantr |
|- ( ( R e. Ring /\ I e. V ) -> R e. _V ) |
| 23 |
|
fcoconst |
|- ( ( 1r Fn _V /\ R e. _V ) -> ( 1r o. ( I X. { R } ) ) = ( I X. { ( 1r ` R ) } ) ) |
| 24 |
20 22 23
|
syl2anc |
|- ( ( R e. Ring /\ I e. V ) -> ( 1r o. ( I X. { R } ) ) = ( I X. { ( 1r ` R ) } ) ) |
| 25 |
2
|
sneqi |
|- { .1. } = { ( 1r ` R ) } |
| 26 |
25
|
xpeq2i |
|- ( I X. { .1. } ) = ( I X. { ( 1r ` R ) } ) |
| 27 |
24 26
|
eqtr4di |
|- ( ( R e. Ring /\ I e. V ) -> ( 1r o. ( I X. { R } ) ) = ( I X. { .1. } ) ) |
| 28 |
5 11 27
|
3eqtr2rd |
|- ( ( R e. Ring /\ I e. V ) -> ( I X. { .1. } ) = ( 1r ` Y ) ) |