| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pws1.y |
⊢ 𝑌 = ( 𝑅 ↑s 𝐼 ) |
| 2 |
|
pws1.o |
⊢ 1 = ( 1r ‘ 𝑅 ) |
| 3 |
|
eqid |
⊢ ( Scalar ‘ 𝑅 ) = ( Scalar ‘ 𝑅 ) |
| 4 |
1 3
|
pwsval |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) → 𝑌 = ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) |
| 5 |
4
|
fveq2d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) → ( 1r ‘ 𝑌 ) = ( 1r ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) ) |
| 6 |
|
eqid |
⊢ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) = ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) |
| 7 |
|
simpr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) → 𝐼 ∈ 𝑉 ) |
| 8 |
|
fvexd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) → ( Scalar ‘ 𝑅 ) ∈ V ) |
| 9 |
|
fconst6g |
⊢ ( 𝑅 ∈ Ring → ( 𝐼 × { 𝑅 } ) : 𝐼 ⟶ Ring ) |
| 10 |
9
|
adantr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) → ( 𝐼 × { 𝑅 } ) : 𝐼 ⟶ Ring ) |
| 11 |
6 7 8 10
|
prds1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) → ( 1r ∘ ( 𝐼 × { 𝑅 } ) ) = ( 1r ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) ) |
| 12 |
|
fn0g |
⊢ 0g Fn V |
| 13 |
|
fnmgp |
⊢ mulGrp Fn V |
| 14 |
|
ssv |
⊢ ran mulGrp ⊆ V |
| 15 |
14
|
a1i |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) → ran mulGrp ⊆ V ) |
| 16 |
|
fnco |
⊢ ( ( 0g Fn V ∧ mulGrp Fn V ∧ ran mulGrp ⊆ V ) → ( 0g ∘ mulGrp ) Fn V ) |
| 17 |
12 13 15 16
|
mp3an12i |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) → ( 0g ∘ mulGrp ) Fn V ) |
| 18 |
|
df-ur |
⊢ 1r = ( 0g ∘ mulGrp ) |
| 19 |
18
|
fneq1i |
⊢ ( 1r Fn V ↔ ( 0g ∘ mulGrp ) Fn V ) |
| 20 |
17 19
|
sylibr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) → 1r Fn V ) |
| 21 |
|
elex |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ V ) |
| 22 |
21
|
adantr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) → 𝑅 ∈ V ) |
| 23 |
|
fcoconst |
⊢ ( ( 1r Fn V ∧ 𝑅 ∈ V ) → ( 1r ∘ ( 𝐼 × { 𝑅 } ) ) = ( 𝐼 × { ( 1r ‘ 𝑅 ) } ) ) |
| 24 |
20 22 23
|
syl2anc |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) → ( 1r ∘ ( 𝐼 × { 𝑅 } ) ) = ( 𝐼 × { ( 1r ‘ 𝑅 ) } ) ) |
| 25 |
2
|
sneqi |
⊢ { 1 } = { ( 1r ‘ 𝑅 ) } |
| 26 |
25
|
xpeq2i |
⊢ ( 𝐼 × { 1 } ) = ( 𝐼 × { ( 1r ‘ 𝑅 ) } ) |
| 27 |
24 26
|
eqtr4di |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) → ( 1r ∘ ( 𝐼 × { 𝑅 } ) ) = ( 𝐼 × { 1 } ) ) |
| 28 |
5 11 27
|
3eqtr2rd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) → ( 𝐼 × { 1 } ) = ( 1r ‘ 𝑌 ) ) |