Metamath Proof Explorer


Theorem pws1

Description: Value of the ring unit in a structure power. (Contributed by Mario Carneiro, 11-Mar-2015)

Ref Expression
Hypotheses pws1.y 𝑌 = ( 𝑅s 𝐼 )
pws1.o 1 = ( 1r𝑅 )
Assertion pws1 ( ( 𝑅 ∈ Ring ∧ 𝐼𝑉 ) → ( 𝐼 × { 1 } ) = ( 1r𝑌 ) )

Proof

Step Hyp Ref Expression
1 pws1.y 𝑌 = ( 𝑅s 𝐼 )
2 pws1.o 1 = ( 1r𝑅 )
3 eqid ( Scalar ‘ 𝑅 ) = ( Scalar ‘ 𝑅 )
4 1 3 pwsval ( ( 𝑅 ∈ Ring ∧ 𝐼𝑉 ) → 𝑌 = ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) )
5 4 fveq2d ( ( 𝑅 ∈ Ring ∧ 𝐼𝑉 ) → ( 1r𝑌 ) = ( 1r ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) )
6 eqid ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) = ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) )
7 simpr ( ( 𝑅 ∈ Ring ∧ 𝐼𝑉 ) → 𝐼𝑉 )
8 fvexd ( ( 𝑅 ∈ Ring ∧ 𝐼𝑉 ) → ( Scalar ‘ 𝑅 ) ∈ V )
9 fconst6g ( 𝑅 ∈ Ring → ( 𝐼 × { 𝑅 } ) : 𝐼 ⟶ Ring )
10 9 adantr ( ( 𝑅 ∈ Ring ∧ 𝐼𝑉 ) → ( 𝐼 × { 𝑅 } ) : 𝐼 ⟶ Ring )
11 6 7 8 10 prds1 ( ( 𝑅 ∈ Ring ∧ 𝐼𝑉 ) → ( 1r ∘ ( 𝐼 × { 𝑅 } ) ) = ( 1r ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) )
12 fn0g 0g Fn V
13 fnmgp mulGrp Fn V
14 ssv ran mulGrp ⊆ V
15 14 a1i ( ( 𝑅 ∈ Ring ∧ 𝐼𝑉 ) → ran mulGrp ⊆ V )
16 fnco ( ( 0g Fn V ∧ mulGrp Fn V ∧ ran mulGrp ⊆ V ) → ( 0g ∘ mulGrp ) Fn V )
17 12 13 15 16 mp3an12i ( ( 𝑅 ∈ Ring ∧ 𝐼𝑉 ) → ( 0g ∘ mulGrp ) Fn V )
18 df-ur 1r = ( 0g ∘ mulGrp )
19 18 fneq1i ( 1r Fn V ↔ ( 0g ∘ mulGrp ) Fn V )
20 17 19 sylibr ( ( 𝑅 ∈ Ring ∧ 𝐼𝑉 ) → 1r Fn V )
21 elex ( 𝑅 ∈ Ring → 𝑅 ∈ V )
22 21 adantr ( ( 𝑅 ∈ Ring ∧ 𝐼𝑉 ) → 𝑅 ∈ V )
23 fcoconst ( ( 1r Fn V ∧ 𝑅 ∈ V ) → ( 1r ∘ ( 𝐼 × { 𝑅 } ) ) = ( 𝐼 × { ( 1r𝑅 ) } ) )
24 20 22 23 syl2anc ( ( 𝑅 ∈ Ring ∧ 𝐼𝑉 ) → ( 1r ∘ ( 𝐼 × { 𝑅 } ) ) = ( 𝐼 × { ( 1r𝑅 ) } ) )
25 2 sneqi { 1 } = { ( 1r𝑅 ) }
26 25 xpeq2i ( 𝐼 × { 1 } ) = ( 𝐼 × { ( 1r𝑅 ) } )
27 24 26 eqtr4di ( ( 𝑅 ∈ Ring ∧ 𝐼𝑉 ) → ( 1r ∘ ( 𝐼 × { 𝑅 } ) ) = ( 𝐼 × { 1 } ) )
28 5 11 27 3eqtr2rd ( ( 𝑅 ∈ Ring ∧ 𝐼𝑉 ) → ( 𝐼 × { 1 } ) = ( 1r𝑌 ) )