Step |
Hyp |
Ref |
Expression |
1 |
|
prds1.y |
⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) |
2 |
|
prds1.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) |
3 |
|
prds1.s |
⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) |
4 |
|
prds1.r |
⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ Ring ) |
5 |
|
eqid |
⊢ ( 𝑆 Xs ( mulGrp ∘ 𝑅 ) ) = ( 𝑆 Xs ( mulGrp ∘ 𝑅 ) ) |
6 |
|
mgpf |
⊢ ( mulGrp ↾ Ring ) : Ring ⟶ Mnd |
7 |
|
fco2 |
⊢ ( ( ( mulGrp ↾ Ring ) : Ring ⟶ Mnd ∧ 𝑅 : 𝐼 ⟶ Ring ) → ( mulGrp ∘ 𝑅 ) : 𝐼 ⟶ Mnd ) |
8 |
6 4 7
|
sylancr |
⊢ ( 𝜑 → ( mulGrp ∘ 𝑅 ) : 𝐼 ⟶ Mnd ) |
9 |
5 2 3 8
|
prds0g |
⊢ ( 𝜑 → ( 0g ∘ ( mulGrp ∘ 𝑅 ) ) = ( 0g ‘ ( 𝑆 Xs ( mulGrp ∘ 𝑅 ) ) ) ) |
10 |
|
eqidd |
⊢ ( 𝜑 → ( Base ‘ ( mulGrp ‘ 𝑌 ) ) = ( Base ‘ ( mulGrp ‘ 𝑌 ) ) ) |
11 |
|
eqid |
⊢ ( mulGrp ‘ 𝑌 ) = ( mulGrp ‘ 𝑌 ) |
12 |
4
|
ffnd |
⊢ ( 𝜑 → 𝑅 Fn 𝐼 ) |
13 |
1 11 5 2 3 12
|
prdsmgp |
⊢ ( 𝜑 → ( ( Base ‘ ( mulGrp ‘ 𝑌 ) ) = ( Base ‘ ( 𝑆 Xs ( mulGrp ∘ 𝑅 ) ) ) ∧ ( +g ‘ ( mulGrp ‘ 𝑌 ) ) = ( +g ‘ ( 𝑆 Xs ( mulGrp ∘ 𝑅 ) ) ) ) ) |
14 |
13
|
simpld |
⊢ ( 𝜑 → ( Base ‘ ( mulGrp ‘ 𝑌 ) ) = ( Base ‘ ( 𝑆 Xs ( mulGrp ∘ 𝑅 ) ) ) ) |
15 |
13
|
simprd |
⊢ ( 𝜑 → ( +g ‘ ( mulGrp ‘ 𝑌 ) ) = ( +g ‘ ( 𝑆 Xs ( mulGrp ∘ 𝑅 ) ) ) ) |
16 |
15
|
oveqdr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( mulGrp ‘ 𝑌 ) ) ∧ 𝑦 ∈ ( Base ‘ ( mulGrp ‘ 𝑌 ) ) ) ) → ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝑌 ) ) 𝑦 ) = ( 𝑥 ( +g ‘ ( 𝑆 Xs ( mulGrp ∘ 𝑅 ) ) ) 𝑦 ) ) |
17 |
10 14 16
|
grpidpropd |
⊢ ( 𝜑 → ( 0g ‘ ( mulGrp ‘ 𝑌 ) ) = ( 0g ‘ ( 𝑆 Xs ( mulGrp ∘ 𝑅 ) ) ) ) |
18 |
9 17
|
eqtr4d |
⊢ ( 𝜑 → ( 0g ∘ ( mulGrp ∘ 𝑅 ) ) = ( 0g ‘ ( mulGrp ‘ 𝑌 ) ) ) |
19 |
|
df-ur |
⊢ 1r = ( 0g ∘ mulGrp ) |
20 |
19
|
coeq1i |
⊢ ( 1r ∘ 𝑅 ) = ( ( 0g ∘ mulGrp ) ∘ 𝑅 ) |
21 |
|
coass |
⊢ ( ( 0g ∘ mulGrp ) ∘ 𝑅 ) = ( 0g ∘ ( mulGrp ∘ 𝑅 ) ) |
22 |
20 21
|
eqtri |
⊢ ( 1r ∘ 𝑅 ) = ( 0g ∘ ( mulGrp ∘ 𝑅 ) ) |
23 |
|
eqid |
⊢ ( 1r ‘ 𝑌 ) = ( 1r ‘ 𝑌 ) |
24 |
11 23
|
ringidval |
⊢ ( 1r ‘ 𝑌 ) = ( 0g ‘ ( mulGrp ‘ 𝑌 ) ) |
25 |
18 22 24
|
3eqtr4g |
⊢ ( 𝜑 → ( 1r ∘ 𝑅 ) = ( 1r ‘ 𝑌 ) ) |