| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ringidval.g | 
							⊢ 𝐺  =  ( mulGrp ‘ 𝑅 )  | 
						
						
							| 2 | 
							
								
							 | 
							ringidval.u | 
							⊢  1   =  ( 1r ‘ 𝑅 )  | 
						
						
							| 3 | 
							
								
							 | 
							df-ur | 
							⊢ 1r  =  ( 0g  ∘  mulGrp )  | 
						
						
							| 4 | 
							
								3
							 | 
							fveq1i | 
							⊢ ( 1r ‘ 𝑅 )  =  ( ( 0g  ∘  mulGrp ) ‘ 𝑅 )  | 
						
						
							| 5 | 
							
								
							 | 
							fnmgp | 
							⊢ mulGrp  Fn  V  | 
						
						
							| 6 | 
							
								
							 | 
							fvco2 | 
							⊢ ( ( mulGrp  Fn  V  ∧  𝑅  ∈  V )  →  ( ( 0g  ∘  mulGrp ) ‘ 𝑅 )  =  ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							mpan | 
							⊢ ( 𝑅  ∈  V  →  ( ( 0g  ∘  mulGrp ) ‘ 𝑅 )  =  ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) )  | 
						
						
							| 8 | 
							
								4 7
							 | 
							eqtrid | 
							⊢ ( 𝑅  ∈  V  →  ( 1r ‘ 𝑅 )  =  ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							0g0 | 
							⊢ ∅  =  ( 0g ‘ ∅ )  | 
						
						
							| 10 | 
							
								
							 | 
							fvprc | 
							⊢ ( ¬  𝑅  ∈  V  →  ( 1r ‘ 𝑅 )  =  ∅ )  | 
						
						
							| 11 | 
							
								
							 | 
							fvprc | 
							⊢ ( ¬  𝑅  ∈  V  →  ( mulGrp ‘ 𝑅 )  =  ∅ )  | 
						
						
							| 12 | 
							
								11
							 | 
							fveq2d | 
							⊢ ( ¬  𝑅  ∈  V  →  ( 0g ‘ ( mulGrp ‘ 𝑅 ) )  =  ( 0g ‘ ∅ ) )  | 
						
						
							| 13 | 
							
								9 10 12
							 | 
							3eqtr4a | 
							⊢ ( ¬  𝑅  ∈  V  →  ( 1r ‘ 𝑅 )  =  ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) )  | 
						
						
							| 14 | 
							
								8 13
							 | 
							pm2.61i | 
							⊢ ( 1r ‘ 𝑅 )  =  ( 0g ‘ ( mulGrp ‘ 𝑅 ) )  | 
						
						
							| 15 | 
							
								1
							 | 
							fveq2i | 
							⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ ( mulGrp ‘ 𝑅 ) )  | 
						
						
							| 16 | 
							
								14 2 15
							 | 
							3eqtr4i | 
							⊢  1   =  ( 0g ‘ 𝐺 )  |