| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							base0 | 
							⊢ ∅  =  ( Base ‘ ∅ )  | 
						
						
							| 2 | 
							
								
							 | 
							eqid | 
							⊢ ( +g ‘ ∅ )  =  ( +g ‘ ∅ )  | 
						
						
							| 3 | 
							
								
							 | 
							eqid | 
							⊢ ( 0g ‘ ∅ )  =  ( 0g ‘ ∅ )  | 
						
						
							| 4 | 
							
								1 2 3
							 | 
							grpidval | 
							⊢ ( 0g ‘ ∅ )  =  ( ℩ 𝑒 ( 𝑒  ∈  ∅  ∧  ∀ 𝑥  ∈  ∅ ( ( 𝑒 ( +g ‘ ∅ ) 𝑥 )  =  𝑥  ∧  ( 𝑥 ( +g ‘ ∅ ) 𝑒 )  =  𝑥 ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							noel | 
							⊢ ¬  𝑒  ∈  ∅  | 
						
						
							| 6 | 
							
								5
							 | 
							intnanr | 
							⊢ ¬  ( 𝑒  ∈  ∅  ∧  ∀ 𝑥  ∈  ∅ ( ( 𝑒 ( +g ‘ ∅ ) 𝑥 )  =  𝑥  ∧  ( 𝑥 ( +g ‘ ∅ ) 𝑒 )  =  𝑥 ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							nex | 
							⊢ ¬  ∃ 𝑒 ( 𝑒  ∈  ∅  ∧  ∀ 𝑥  ∈  ∅ ( ( 𝑒 ( +g ‘ ∅ ) 𝑥 )  =  𝑥  ∧  ( 𝑥 ( +g ‘ ∅ ) 𝑒 )  =  𝑥 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							euex | 
							⊢ ( ∃! 𝑒 ( 𝑒  ∈  ∅  ∧  ∀ 𝑥  ∈  ∅ ( ( 𝑒 ( +g ‘ ∅ ) 𝑥 )  =  𝑥  ∧  ( 𝑥 ( +g ‘ ∅ ) 𝑒 )  =  𝑥 ) )  →  ∃ 𝑒 ( 𝑒  ∈  ∅  ∧  ∀ 𝑥  ∈  ∅ ( ( 𝑒 ( +g ‘ ∅ ) 𝑥 )  =  𝑥  ∧  ( 𝑥 ( +g ‘ ∅ ) 𝑒 )  =  𝑥 ) ) )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							mto | 
							⊢ ¬  ∃! 𝑒 ( 𝑒  ∈  ∅  ∧  ∀ 𝑥  ∈  ∅ ( ( 𝑒 ( +g ‘ ∅ ) 𝑥 )  =  𝑥  ∧  ( 𝑥 ( +g ‘ ∅ ) 𝑒 )  =  𝑥 ) )  | 
						
						
							| 10 | 
							
								
							 | 
							iotanul | 
							⊢ ( ¬  ∃! 𝑒 ( 𝑒  ∈  ∅  ∧  ∀ 𝑥  ∈  ∅ ( ( 𝑒 ( +g ‘ ∅ ) 𝑥 )  =  𝑥  ∧  ( 𝑥 ( +g ‘ ∅ ) 𝑒 )  =  𝑥 ) )  →  ( ℩ 𝑒 ( 𝑒  ∈  ∅  ∧  ∀ 𝑥  ∈  ∅ ( ( 𝑒 ( +g ‘ ∅ ) 𝑥 )  =  𝑥  ∧  ( 𝑥 ( +g ‘ ∅ ) 𝑒 )  =  𝑥 ) ) )  =  ∅ )  | 
						
						
							| 11 | 
							
								9 10
							 | 
							ax-mp | 
							⊢ ( ℩ 𝑒 ( 𝑒  ∈  ∅  ∧  ∀ 𝑥  ∈  ∅ ( ( 𝑒 ( +g ‘ ∅ ) 𝑥 )  =  𝑥  ∧  ( 𝑥 ( +g ‘ ∅ ) 𝑒 )  =  𝑥 ) ) )  =  ∅  | 
						
						
							| 12 | 
							
								4 11
							 | 
							eqtr2i | 
							⊢ ∅  =  ( 0g ‘ ∅ )  |