| Step |
Hyp |
Ref |
Expression |
| 1 |
|
irredn0.i |
|
| 2 |
|
irredrmul.u |
|
| 3 |
|
irredrmul.t |
|
| 4 |
|
simp2 |
|
| 5 |
|
simp1 |
|
| 6 |
|
simp3 |
|
| 7 |
|
eqid |
|
| 8 |
2 7
|
unitdvcl |
|
| 9 |
8
|
3com23 |
|
| 10 |
9
|
3expia |
|
| 11 |
5 6 10
|
syl2anc |
|
| 12 |
|
eqid |
|
| 13 |
1 12
|
irredcl |
|
| 14 |
13
|
3ad2ant2 |
|
| 15 |
12 2 7 3
|
dvrcan3 |
|
| 16 |
5 14 6 15
|
syl3anc |
|
| 17 |
16
|
eleq1d |
|
| 18 |
11 17
|
sylibd |
|
| 19 |
5
|
ad2antrr |
|
| 20 |
|
eldifi |
|
| 21 |
20
|
ad2antrl |
|
| 22 |
6
|
ad2antrr |
|
| 23 |
12 2 7
|
dvrcl |
|
| 24 |
19 21 22 23
|
syl3anc |
|
| 25 |
|
eldifn |
|
| 26 |
25
|
ad2antrl |
|
| 27 |
2 3
|
unitmulcl |
|
| 28 |
27
|
3com23 |
|
| 29 |
28
|
3expia |
|
| 30 |
19 22 29
|
syl2anc |
|
| 31 |
12 2 7 3
|
dvrcan1 |
|
| 32 |
19 21 22 31
|
syl3anc |
|
| 33 |
32
|
eleq1d |
|
| 34 |
30 33
|
sylibd |
|
| 35 |
26 34
|
mtod |
|
| 36 |
24 35
|
eldifd |
|
| 37 |
|
simprr |
|
| 38 |
37
|
oveq1d |
|
| 39 |
|
eldifi |
|
| 40 |
39
|
ad2antlr |
|
| 41 |
12 2 7 3
|
dvrass |
|
| 42 |
19 40 21 22 41
|
syl13anc |
|
| 43 |
16
|
ad2antrr |
|
| 44 |
38 42 43
|
3eqtr3d |
|
| 45 |
|
oveq2 |
|
| 46 |
45
|
eqeq1d |
|
| 47 |
46
|
rspcev |
|
| 48 |
36 44 47
|
syl2anc |
|
| 49 |
48
|
rexlimdvaa |
|
| 50 |
49
|
reximdva |
|
| 51 |
18 50
|
orim12d |
|
| 52 |
12 2
|
unitcl |
|
| 53 |
52
|
3ad2ant3 |
|
| 54 |
12 3
|
ringcl |
|
| 55 |
5 14 53 54
|
syl3anc |
|
| 56 |
|
eqid |
|
| 57 |
12 2 1 56 3
|
isnirred |
|
| 58 |
55 57
|
syl |
|
| 59 |
12 2 1 56 3
|
isnirred |
|
| 60 |
14 59
|
syl |
|
| 61 |
51 58 60
|
3imtr4d |
|
| 62 |
4 61
|
mt4d |
|