Metamath Proof Explorer


Theorem qusring2

Description: The quotient structure of a ring is a ring. (Contributed by Mario Carneiro, 14-Jun-2015)

Ref Expression
Hypotheses qusring2.u φU=R/𝑠˙
qusring2.v φV=BaseR
qusring2.p +˙=+R
qusring2.t ·˙=R
qusring2.o 1˙=1R
qusring2.r φ˙ErV
qusring2.e1 φa˙pb˙qa+˙b˙p+˙q
qusring2.e2 φa˙pb˙qa·˙b˙p·˙q
qusring2.x φRRing
Assertion qusring2 φURing1˙˙=1U

Proof

Step Hyp Ref Expression
1 qusring2.u φU=R/𝑠˙
2 qusring2.v φV=BaseR
3 qusring2.p +˙=+R
4 qusring2.t ·˙=R
5 qusring2.o 1˙=1R
6 qusring2.r φ˙ErV
7 qusring2.e1 φa˙pb˙qa+˙b˙p+˙q
8 qusring2.e2 φa˙pb˙qa·˙b˙p·˙q
9 qusring2.x φRRing
10 eqid uVu˙=uVu˙
11 fvex BaseRV
12 2 11 eqeltrdi φVV
13 erex ˙ErVVV˙V
14 6 12 13 sylc φ˙V
15 1 2 10 14 9 qusval φU=uVu˙𝑠R
16 1 2 10 14 9 quslem φuVu˙:VontoV/˙
17 9 adantr φxVyVRRing
18 simprl φxVyVxV
19 2 adantr φxVyVV=BaseR
20 18 19 eleqtrd φxVyVxBaseR
21 simprr φxVyVyV
22 21 19 eleqtrd φxVyVyBaseR
23 eqid BaseR=BaseR
24 23 3 ringacl RRingxBaseRyBaseRx+˙yBaseR
25 17 20 22 24 syl3anc φxVyVx+˙yBaseR
26 25 19 eleqtrrd φxVyVx+˙yV
27 6 12 10 26 7 ercpbl φaVbVpVqVuVu˙a=uVu˙puVu˙b=uVu˙quVu˙a+˙b=uVu˙p+˙q
28 23 4 ringcl RRingxBaseRyBaseRx·˙yBaseR
29 17 20 22 28 syl3anc φxVyVx·˙yBaseR
30 29 19 eleqtrrd φxVyVx·˙yV
31 6 12 10 30 8 ercpbl φaVbVpVqVuVu˙a=uVu˙puVu˙b=uVu˙quVu˙a·˙b=uVu˙p·˙q
32 15 2 3 4 5 16 27 31 9 imasring φURinguVu˙1˙=1U
33 6 12 10 divsfval φuVu˙1˙=1˙˙
34 33 eqcomd φ1˙˙=uVu˙1˙
35 34 eqeq1d φ1˙˙=1UuVu˙1˙=1U
36 35 anbi2d φURing1˙˙=1UURinguVu˙1˙=1U
37 32 36 mpbird φURing1˙˙=1U