Description: The quotient structure of a ring is a ring. (Contributed by Mario Carneiro, 14-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | qusring2.u | |
|
qusring2.v | |
||
qusring2.p | |
||
qusring2.t | |
||
qusring2.o | |
||
qusring2.r | |
||
qusring2.e1 | |
||
qusring2.e2 | |
||
qusring2.x | |
||
Assertion | qusring2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qusring2.u | |
|
2 | qusring2.v | |
|
3 | qusring2.p | |
|
4 | qusring2.t | |
|
5 | qusring2.o | |
|
6 | qusring2.r | |
|
7 | qusring2.e1 | |
|
8 | qusring2.e2 | |
|
9 | qusring2.x | |
|
10 | eqid | |
|
11 | fvex | |
|
12 | 2 11 | eqeltrdi | |
13 | erex | |
|
14 | 6 12 13 | sylc | |
15 | 1 2 10 14 9 | qusval | |
16 | 1 2 10 14 9 | quslem | |
17 | 9 | adantr | |
18 | simprl | |
|
19 | 2 | adantr | |
20 | 18 19 | eleqtrd | |
21 | simprr | |
|
22 | 21 19 | eleqtrd | |
23 | eqid | |
|
24 | 23 3 | ringacl | |
25 | 17 20 22 24 | syl3anc | |
26 | 25 19 | eleqtrrd | |
27 | 6 12 10 26 7 | ercpbl | |
28 | 23 4 | ringcl | |
29 | 17 20 22 28 | syl3anc | |
30 | 29 19 | eleqtrrd | |
31 | 6 12 10 30 8 | ercpbl | |
32 | 15 2 3 4 5 16 27 31 9 | imasring | |
33 | 6 12 10 | divsfval | |
34 | 33 | eqcomd | |
35 | 34 | eqeq1d | |
36 | 35 | anbi2d | |
37 | 32 36 | mpbird | |