Metamath Proof Explorer


Theorem ercpbl

Description: Translate the function compatibility relation to a quotient set. (Contributed by Mario Carneiro, 24-Feb-2015) (Revised by Mario Carneiro, 12-Aug-2015) (Revised by AV, 12-Jul-2024)

Ref Expression
Hypotheses ercpbl.r φ˙ErV
ercpbl.v φVW
ercpbl.f F=xVx˙
ercpbl.c φaVbVa+˙bV
ercpbl.e φA˙CB˙DA+˙B˙C+˙D
Assertion ercpbl φAVBVCVDVFA=FCFB=FDFA+˙B=FC+˙D

Proof

Step Hyp Ref Expression
1 ercpbl.r φ˙ErV
2 ercpbl.v φVW
3 ercpbl.f F=xVx˙
4 ercpbl.c φaVbVa+˙bV
5 ercpbl.e φA˙CB˙DA+˙B˙C+˙D
6 5 3ad2ant1 φAVBVCVDVA˙CB˙DA+˙B˙C+˙D
7 1 3ad2ant1 φAVBVCVDV˙ErV
8 2 3ad2ant1 φAVBVCVDVVW
9 simp2l φAVBVCVDVAV
10 7 8 3 9 ercpbllem φAVBVCVDVFA=FCA˙C
11 simp2r φAVBVCVDVBV
12 7 8 3 11 ercpbllem φAVBVCVDVFB=FDB˙D
13 10 12 anbi12d φAVBVCVDVFA=FCFB=FDA˙CB˙D
14 4 caovclg φAVBVA+˙BV
15 14 3adant3 φAVBVCVDVA+˙BV
16 7 8 3 15 ercpbllem φAVBVCVDVFA+˙B=FC+˙DA+˙B˙C+˙D
17 6 13 16 3imtr4d φAVBVCVDVFA=FCFB=FDFA+˙B=FC+˙D