Step |
Hyp |
Ref |
Expression |
1 |
|
ercpbl.r |
⊢ ( 𝜑 → ∼ Er 𝑉 ) |
2 |
|
ercpbl.v |
⊢ ( 𝜑 → 𝑉 ∈ 𝑊 ) |
3 |
|
ercpbl.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝑉 ↦ [ 𝑥 ] ∼ ) |
4 |
|
ercpbl.c |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( 𝑎 + 𝑏 ) ∈ 𝑉 ) |
5 |
|
ercpbl.e |
⊢ ( 𝜑 → ( ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) → ( 𝐴 + 𝐵 ) ∼ ( 𝐶 + 𝐷 ) ) ) |
6 |
5
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ( ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) → ( 𝐴 + 𝐵 ) ∼ ( 𝐶 + 𝐷 ) ) ) |
7 |
1
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ∼ Er 𝑉 ) |
8 |
2
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → 𝑉 ∈ 𝑊 ) |
9 |
|
simp2l |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → 𝐴 ∈ 𝑉 ) |
10 |
7 8 3 9
|
ercpbllem |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐶 ) ↔ 𝐴 ∼ 𝐶 ) ) |
11 |
|
simp2r |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → 𝐵 ∈ 𝑉 ) |
12 |
7 8 3 11
|
ercpbllem |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝐵 ) = ( 𝐹 ‘ 𝐷 ) ↔ 𝐵 ∼ 𝐷 ) ) |
13 |
10 12
|
anbi12d |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐶 ) ∧ ( 𝐹 ‘ 𝐵 ) = ( 𝐹 ‘ 𝐷 ) ) ↔ ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) ) ) |
14 |
4
|
caovclg |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) → ( 𝐴 + 𝐵 ) ∈ 𝑉 ) |
15 |
14
|
3adant3 |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ( 𝐴 + 𝐵 ) ∈ 𝑉 ) |
16 |
7 8 3 15
|
ercpbllem |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ ( 𝐴 + 𝐵 ) ) = ( 𝐹 ‘ ( 𝐶 + 𝐷 ) ) ↔ ( 𝐴 + 𝐵 ) ∼ ( 𝐶 + 𝐷 ) ) ) |
17 |
6 13 16
|
3imtr4d |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐶 ) ∧ ( 𝐹 ‘ 𝐵 ) = ( 𝐹 ‘ 𝐷 ) ) → ( 𝐹 ‘ ( 𝐴 + 𝐵 ) ) = ( 𝐹 ‘ ( 𝐶 + 𝐷 ) ) ) ) |