Metamath Proof Explorer


Theorem irrednegb

Description: An element is irreducible iff its negative is. (Contributed by Mario Carneiro, 4-Dec-2014)

Ref Expression
Hypotheses irredn0.i I=IrredR
irredneg.n N=invgR
irrednegb.b B=BaseR
Assertion irrednegb RRingXBXINXI

Proof

Step Hyp Ref Expression
1 irredn0.i I=IrredR
2 irredneg.n N=invgR
3 irrednegb.b B=BaseR
4 1 2 irredneg RRingXINXI
5 4 adantlr RRingXBXINXI
6 ringgrp RRingRGrp
7 3 2 grpinvinv RGrpXBNNX=X
8 6 7 sylan RRingXBNNX=X
9 8 adantr RRingXBNXINNX=X
10 1 2 irredneg RRingNXINNXI
11 10 adantlr RRingXBNXINNXI
12 9 11 eqeltrrd RRingXBNXIXI
13 5 12 impbida RRingXBXINXI