Description: An element is irreducible iff its negative is. (Contributed by Mario Carneiro, 4-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | irredn0.i | |
|
irredneg.n | |
||
irrednegb.b | |
||
Assertion | irrednegb | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | irredn0.i | |
|
2 | irredneg.n | |
|
3 | irrednegb.b | |
|
4 | 1 2 | irredneg | |
5 | 4 | adantlr | |
6 | ringgrp | |
|
7 | 3 2 | grpinvinv | |
8 | 6 7 | sylan | |
9 | 8 | adantr | |
10 | 1 2 | irredneg | |
11 | 10 | adantlr | |
12 | 9 11 | eqeltrrd | |
13 | 5 12 | impbida | |