Metamath Proof Explorer


Theorem reldvdsr

Description: The divides relation is a relation. (Contributed by Mario Carneiro, 1-Dec-2014)

Ref Expression
Hypothesis reldvdsr.1 ˙=rR
Assertion reldvdsr Rel˙

Proof

Step Hyp Ref Expression
1 reldvdsr.1 ˙=rR
2 df-dvdsr r=wVxy|xBasewzBasewzwx=y
3 2 relmptopab RelrR
4 1 releqi Rel˙RelrR
5 3 4 mpbir Rel˙