Metamath Proof Explorer


Theorem reldvdsr

Description: The divides relation is a relation. (Contributed by Mario Carneiro, 1-Dec-2014)

Ref Expression
Hypothesis reldvdsr.1
|- .|| = ( ||r ` R )
Assertion reldvdsr
|- Rel .||

Proof

Step Hyp Ref Expression
1 reldvdsr.1
 |-  .|| = ( ||r ` R )
2 df-dvdsr
 |-  ||r = ( w e. _V |-> { <. x , y >. | ( x e. ( Base ` w ) /\ E. z e. ( Base ` w ) ( z ( .r ` w ) x ) = y ) } )
3 2 relmptopab
 |-  Rel ( ||r ` R )
4 1 releqi
 |-  ( Rel .|| <-> Rel ( ||r ` R ) )
5 3 4 mpbir
 |-  Rel .||