Description: The divides relation is a relation. (Contributed by Mario Carneiro, 1-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | reldvdsr.1 | |- .|| = ( ||r ` R ) |
|
Assertion | reldvdsr | |- Rel .|| |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reldvdsr.1 | |- .|| = ( ||r ` R ) |
|
2 | df-dvdsr | |- ||r = ( w e. _V |-> { <. x , y >. | ( x e. ( Base ` w ) /\ E. z e. ( Base ` w ) ( z ( .r ` w ) x ) = y ) } ) |
|
3 | 2 | relmptopab | |- Rel ( ||r ` R ) |
4 | 1 | releqi | |- ( Rel .|| <-> Rel ( ||r ` R ) ) |
5 | 3 4 | mpbir | |- Rel .|| |