| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ringinvnzdiv.b |
|
| 2 |
|
ringinvnzdiv.t |
|
| 3 |
|
ringinvnzdiv.u |
|
| 4 |
|
ringinvnzdiv.z |
|
| 5 |
|
ringinvnzdiv.r |
|
| 6 |
|
ringinvnzdiv.x |
|
| 7 |
|
ringinvnzdiv.a |
|
| 8 |
|
ringinvnzdiv.y |
|
| 9 |
1 2 3
|
ringlidm |
|
| 10 |
5 8 9
|
syl2anc |
|
| 11 |
10
|
eqcomd |
|
| 12 |
11
|
ad3antrrr |
|
| 13 |
|
oveq1 |
|
| 14 |
13
|
eqcoms |
|
| 15 |
14
|
adantl |
|
| 16 |
5
|
adantr |
|
| 17 |
|
simpr |
|
| 18 |
6
|
adantr |
|
| 19 |
8
|
adantr |
|
| 20 |
17 18 19
|
3jca |
|
| 21 |
16 20
|
jca |
|
| 22 |
21
|
adantr |
|
| 23 |
1 2
|
ringass |
|
| 24 |
22 23
|
syl |
|
| 25 |
15 24
|
eqtrd |
|
| 26 |
25
|
adantr |
|
| 27 |
|
oveq2 |
|
| 28 |
1 2 4
|
ringrz |
|
| 29 |
5 28
|
sylan |
|
| 30 |
29
|
adantr |
|
| 31 |
27 30
|
sylan9eqr |
|
| 32 |
12 26 31
|
3eqtrd |
|
| 33 |
32
|
exp31 |
|
| 34 |
33
|
rexlimdva |
|
| 35 |
7 34
|
mpd |
|
| 36 |
|
oveq2 |
|
| 37 |
1 2 4
|
ringrz |
|
| 38 |
5 6 37
|
syl2anc |
|
| 39 |
36 38
|
sylan9eqr |
|
| 40 |
39
|
ex |
|
| 41 |
35 40
|
impbid |
|