| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ringinvnzdiv.b |
|- B = ( Base ` R ) |
| 2 |
|
ringinvnzdiv.t |
|- .x. = ( .r ` R ) |
| 3 |
|
ringinvnzdiv.u |
|- .1. = ( 1r ` R ) |
| 4 |
|
ringinvnzdiv.z |
|- .0. = ( 0g ` R ) |
| 5 |
|
ringinvnzdiv.r |
|- ( ph -> R e. Ring ) |
| 6 |
|
ringinvnzdiv.x |
|- ( ph -> X e. B ) |
| 7 |
|
ringinvnzdiv.a |
|- ( ph -> E. a e. B ( a .x. X ) = .1. ) |
| 8 |
|
ringinvnzdiv.y |
|- ( ph -> Y e. B ) |
| 9 |
1 2 3
|
ringlidm |
|- ( ( R e. Ring /\ Y e. B ) -> ( .1. .x. Y ) = Y ) |
| 10 |
5 8 9
|
syl2anc |
|- ( ph -> ( .1. .x. Y ) = Y ) |
| 11 |
10
|
eqcomd |
|- ( ph -> Y = ( .1. .x. Y ) ) |
| 12 |
11
|
ad3antrrr |
|- ( ( ( ( ph /\ a e. B ) /\ ( a .x. X ) = .1. ) /\ ( X .x. Y ) = .0. ) -> Y = ( .1. .x. Y ) ) |
| 13 |
|
oveq1 |
|- ( .1. = ( a .x. X ) -> ( .1. .x. Y ) = ( ( a .x. X ) .x. Y ) ) |
| 14 |
13
|
eqcoms |
|- ( ( a .x. X ) = .1. -> ( .1. .x. Y ) = ( ( a .x. X ) .x. Y ) ) |
| 15 |
14
|
adantl |
|- ( ( ( ph /\ a e. B ) /\ ( a .x. X ) = .1. ) -> ( .1. .x. Y ) = ( ( a .x. X ) .x. Y ) ) |
| 16 |
5
|
adantr |
|- ( ( ph /\ a e. B ) -> R e. Ring ) |
| 17 |
|
simpr |
|- ( ( ph /\ a e. B ) -> a e. B ) |
| 18 |
6
|
adantr |
|- ( ( ph /\ a e. B ) -> X e. B ) |
| 19 |
8
|
adantr |
|- ( ( ph /\ a e. B ) -> Y e. B ) |
| 20 |
17 18 19
|
3jca |
|- ( ( ph /\ a e. B ) -> ( a e. B /\ X e. B /\ Y e. B ) ) |
| 21 |
16 20
|
jca |
|- ( ( ph /\ a e. B ) -> ( R e. Ring /\ ( a e. B /\ X e. B /\ Y e. B ) ) ) |
| 22 |
21
|
adantr |
|- ( ( ( ph /\ a e. B ) /\ ( a .x. X ) = .1. ) -> ( R e. Ring /\ ( a e. B /\ X e. B /\ Y e. B ) ) ) |
| 23 |
1 2
|
ringass |
|- ( ( R e. Ring /\ ( a e. B /\ X e. B /\ Y e. B ) ) -> ( ( a .x. X ) .x. Y ) = ( a .x. ( X .x. Y ) ) ) |
| 24 |
22 23
|
syl |
|- ( ( ( ph /\ a e. B ) /\ ( a .x. X ) = .1. ) -> ( ( a .x. X ) .x. Y ) = ( a .x. ( X .x. Y ) ) ) |
| 25 |
15 24
|
eqtrd |
|- ( ( ( ph /\ a e. B ) /\ ( a .x. X ) = .1. ) -> ( .1. .x. Y ) = ( a .x. ( X .x. Y ) ) ) |
| 26 |
25
|
adantr |
|- ( ( ( ( ph /\ a e. B ) /\ ( a .x. X ) = .1. ) /\ ( X .x. Y ) = .0. ) -> ( .1. .x. Y ) = ( a .x. ( X .x. Y ) ) ) |
| 27 |
|
oveq2 |
|- ( ( X .x. Y ) = .0. -> ( a .x. ( X .x. Y ) ) = ( a .x. .0. ) ) |
| 28 |
1 2 4
|
ringrz |
|- ( ( R e. Ring /\ a e. B ) -> ( a .x. .0. ) = .0. ) |
| 29 |
5 28
|
sylan |
|- ( ( ph /\ a e. B ) -> ( a .x. .0. ) = .0. ) |
| 30 |
29
|
adantr |
|- ( ( ( ph /\ a e. B ) /\ ( a .x. X ) = .1. ) -> ( a .x. .0. ) = .0. ) |
| 31 |
27 30
|
sylan9eqr |
|- ( ( ( ( ph /\ a e. B ) /\ ( a .x. X ) = .1. ) /\ ( X .x. Y ) = .0. ) -> ( a .x. ( X .x. Y ) ) = .0. ) |
| 32 |
12 26 31
|
3eqtrd |
|- ( ( ( ( ph /\ a e. B ) /\ ( a .x. X ) = .1. ) /\ ( X .x. Y ) = .0. ) -> Y = .0. ) |
| 33 |
32
|
exp31 |
|- ( ( ph /\ a e. B ) -> ( ( a .x. X ) = .1. -> ( ( X .x. Y ) = .0. -> Y = .0. ) ) ) |
| 34 |
33
|
rexlimdva |
|- ( ph -> ( E. a e. B ( a .x. X ) = .1. -> ( ( X .x. Y ) = .0. -> Y = .0. ) ) ) |
| 35 |
7 34
|
mpd |
|- ( ph -> ( ( X .x. Y ) = .0. -> Y = .0. ) ) |
| 36 |
|
oveq2 |
|- ( Y = .0. -> ( X .x. Y ) = ( X .x. .0. ) ) |
| 37 |
1 2 4
|
ringrz |
|- ( ( R e. Ring /\ X e. B ) -> ( X .x. .0. ) = .0. ) |
| 38 |
5 6 37
|
syl2anc |
|- ( ph -> ( X .x. .0. ) = .0. ) |
| 39 |
36 38
|
sylan9eqr |
|- ( ( ph /\ Y = .0. ) -> ( X .x. Y ) = .0. ) |
| 40 |
39
|
ex |
|- ( ph -> ( Y = .0. -> ( X .x. Y ) = .0. ) ) |
| 41 |
35 40
|
impbid |
|- ( ph -> ( ( X .x. Y ) = .0. <-> Y = .0. ) ) |