| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsummgp0.g |
|
| 2 |
|
gsummgp0.0 |
|
| 3 |
|
gsummgp0.r |
|
| 4 |
|
gsummgp0.n |
|
| 5 |
|
gsummgp0.a |
|
| 6 |
|
gsummgp0.e |
|
| 7 |
|
gsummgp0.b |
|
| 8 |
|
difsnid |
|
| 9 |
8
|
eqcomd |
|
| 10 |
9
|
ad2antrl |
|
| 11 |
10
|
mpteq1d |
|
| 12 |
11
|
oveq2d |
|
| 13 |
|
eqid |
|
| 14 |
1 13
|
mgpbas |
|
| 15 |
|
eqid |
|
| 16 |
1 15
|
mgpplusg |
|
| 17 |
1
|
crngmgp |
|
| 18 |
3 17
|
syl |
|
| 19 |
18
|
adantr |
|
| 20 |
|
diffi |
|
| 21 |
4 20
|
syl |
|
| 22 |
21
|
adantr |
|
| 23 |
|
simpl |
|
| 24 |
|
eldifi |
|
| 25 |
23 24 5
|
syl2an |
|
| 26 |
|
simprl |
|
| 27 |
|
neldifsnd |
|
| 28 |
|
crngring |
|
| 29 |
3 28
|
syl |
|
| 30 |
|
ringmnd |
|
| 31 |
13 2
|
mndidcl |
|
| 32 |
29 30 31
|
3syl |
|
| 33 |
32
|
adantr |
|
| 34 |
|
eleq1 |
|
| 35 |
34
|
ad2antll |
|
| 36 |
33 35
|
mpbird |
|
| 37 |
6
|
adantlr |
|
| 38 |
14 16 19 22 25 26 27 36 37
|
gsumunsnd |
|
| 39 |
|
oveq2 |
|
| 40 |
39
|
ad2antll |
|
| 41 |
24 5
|
sylan2 |
|
| 42 |
41
|
ralrimiva |
|
| 43 |
14 18 21 42
|
gsummptcl |
|
| 44 |
43
|
adantr |
|
| 45 |
13 15 2
|
ringrz |
|
| 46 |
29 44 45
|
syl2an2r |
|
| 47 |
40 46
|
eqtrd |
|
| 48 |
12 38 47
|
3eqtrd |
|
| 49 |
7 48
|
rexlimddv |
|