| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsummgp0.g |
⊢ 𝐺 = ( mulGrp ‘ 𝑅 ) |
| 2 |
|
gsummgp0.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 3 |
|
gsummgp0.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
| 4 |
|
gsummgp0.n |
⊢ ( 𝜑 → 𝑁 ∈ Fin ) |
| 5 |
|
gsummgp0.a |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑁 ) → 𝐴 ∈ ( Base ‘ 𝑅 ) ) |
| 6 |
|
gsummgp0.e |
⊢ ( ( 𝜑 ∧ 𝑛 = 𝑖 ) → 𝐴 = 𝐵 ) |
| 7 |
|
gsummgp0.b |
⊢ ( 𝜑 → ∃ 𝑖 ∈ 𝑁 𝐵 = 0 ) |
| 8 |
|
difsnid |
⊢ ( 𝑖 ∈ 𝑁 → ( ( 𝑁 ∖ { 𝑖 } ) ∪ { 𝑖 } ) = 𝑁 ) |
| 9 |
8
|
eqcomd |
⊢ ( 𝑖 ∈ 𝑁 → 𝑁 = ( ( 𝑁 ∖ { 𝑖 } ) ∪ { 𝑖 } ) ) |
| 10 |
9
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑁 ∧ 𝐵 = 0 ) ) → 𝑁 = ( ( 𝑁 ∖ { 𝑖 } ) ∪ { 𝑖 } ) ) |
| 11 |
10
|
mpteq1d |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑁 ∧ 𝐵 = 0 ) ) → ( 𝑛 ∈ 𝑁 ↦ 𝐴 ) = ( 𝑛 ∈ ( ( 𝑁 ∖ { 𝑖 } ) ∪ { 𝑖 } ) ↦ 𝐴 ) ) |
| 12 |
11
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑁 ∧ 𝐵 = 0 ) ) → ( 𝐺 Σg ( 𝑛 ∈ 𝑁 ↦ 𝐴 ) ) = ( 𝐺 Σg ( 𝑛 ∈ ( ( 𝑁 ∖ { 𝑖 } ) ∪ { 𝑖 } ) ↦ 𝐴 ) ) ) |
| 13 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 14 |
1 13
|
mgpbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝐺 ) |
| 15 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 16 |
1 15
|
mgpplusg |
⊢ ( .r ‘ 𝑅 ) = ( +g ‘ 𝐺 ) |
| 17 |
1
|
crngmgp |
⊢ ( 𝑅 ∈ CRing → 𝐺 ∈ CMnd ) |
| 18 |
3 17
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ CMnd ) |
| 19 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑁 ∧ 𝐵 = 0 ) ) → 𝐺 ∈ CMnd ) |
| 20 |
|
diffi |
⊢ ( 𝑁 ∈ Fin → ( 𝑁 ∖ { 𝑖 } ) ∈ Fin ) |
| 21 |
4 20
|
syl |
⊢ ( 𝜑 → ( 𝑁 ∖ { 𝑖 } ) ∈ Fin ) |
| 22 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑁 ∧ 𝐵 = 0 ) ) → ( 𝑁 ∖ { 𝑖 } ) ∈ Fin ) |
| 23 |
|
simpl |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑁 ∧ 𝐵 = 0 ) ) → 𝜑 ) |
| 24 |
|
eldifi |
⊢ ( 𝑛 ∈ ( 𝑁 ∖ { 𝑖 } ) → 𝑛 ∈ 𝑁 ) |
| 25 |
23 24 5
|
syl2an |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑁 ∧ 𝐵 = 0 ) ) ∧ 𝑛 ∈ ( 𝑁 ∖ { 𝑖 } ) ) → 𝐴 ∈ ( Base ‘ 𝑅 ) ) |
| 26 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑁 ∧ 𝐵 = 0 ) ) → 𝑖 ∈ 𝑁 ) |
| 27 |
|
neldifsnd |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑁 ∧ 𝐵 = 0 ) ) → ¬ 𝑖 ∈ ( 𝑁 ∖ { 𝑖 } ) ) |
| 28 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
| 29 |
3 28
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 30 |
|
ringmnd |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Mnd ) |
| 31 |
13 2
|
mndidcl |
⊢ ( 𝑅 ∈ Mnd → 0 ∈ ( Base ‘ 𝑅 ) ) |
| 32 |
29 30 31
|
3syl |
⊢ ( 𝜑 → 0 ∈ ( Base ‘ 𝑅 ) ) |
| 33 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑁 ∧ 𝐵 = 0 ) ) → 0 ∈ ( Base ‘ 𝑅 ) ) |
| 34 |
|
eleq1 |
⊢ ( 𝐵 = 0 → ( 𝐵 ∈ ( Base ‘ 𝑅 ) ↔ 0 ∈ ( Base ‘ 𝑅 ) ) ) |
| 35 |
34
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑁 ∧ 𝐵 = 0 ) ) → ( 𝐵 ∈ ( Base ‘ 𝑅 ) ↔ 0 ∈ ( Base ‘ 𝑅 ) ) ) |
| 36 |
33 35
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑁 ∧ 𝐵 = 0 ) ) → 𝐵 ∈ ( Base ‘ 𝑅 ) ) |
| 37 |
6
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑁 ∧ 𝐵 = 0 ) ) ∧ 𝑛 = 𝑖 ) → 𝐴 = 𝐵 ) |
| 38 |
14 16 19 22 25 26 27 36 37
|
gsumunsnd |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑁 ∧ 𝐵 = 0 ) ) → ( 𝐺 Σg ( 𝑛 ∈ ( ( 𝑁 ∖ { 𝑖 } ) ∪ { 𝑖 } ) ↦ 𝐴 ) ) = ( ( 𝐺 Σg ( 𝑛 ∈ ( 𝑁 ∖ { 𝑖 } ) ↦ 𝐴 ) ) ( .r ‘ 𝑅 ) 𝐵 ) ) |
| 39 |
|
oveq2 |
⊢ ( 𝐵 = 0 → ( ( 𝐺 Σg ( 𝑛 ∈ ( 𝑁 ∖ { 𝑖 } ) ↦ 𝐴 ) ) ( .r ‘ 𝑅 ) 𝐵 ) = ( ( 𝐺 Σg ( 𝑛 ∈ ( 𝑁 ∖ { 𝑖 } ) ↦ 𝐴 ) ) ( .r ‘ 𝑅 ) 0 ) ) |
| 40 |
39
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑁 ∧ 𝐵 = 0 ) ) → ( ( 𝐺 Σg ( 𝑛 ∈ ( 𝑁 ∖ { 𝑖 } ) ↦ 𝐴 ) ) ( .r ‘ 𝑅 ) 𝐵 ) = ( ( 𝐺 Σg ( 𝑛 ∈ ( 𝑁 ∖ { 𝑖 } ) ↦ 𝐴 ) ) ( .r ‘ 𝑅 ) 0 ) ) |
| 41 |
24 5
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑁 ∖ { 𝑖 } ) ) → 𝐴 ∈ ( Base ‘ 𝑅 ) ) |
| 42 |
41
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝑖 } ) 𝐴 ∈ ( Base ‘ 𝑅 ) ) |
| 43 |
14 18 21 42
|
gsummptcl |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑛 ∈ ( 𝑁 ∖ { 𝑖 } ) ↦ 𝐴 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 44 |
43
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑁 ∧ 𝐵 = 0 ) ) → ( 𝐺 Σg ( 𝑛 ∈ ( 𝑁 ∖ { 𝑖 } ) ↦ 𝐴 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 45 |
13 15 2
|
ringrz |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐺 Σg ( 𝑛 ∈ ( 𝑁 ∖ { 𝑖 } ) ↦ 𝐴 ) ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝐺 Σg ( 𝑛 ∈ ( 𝑁 ∖ { 𝑖 } ) ↦ 𝐴 ) ) ( .r ‘ 𝑅 ) 0 ) = 0 ) |
| 46 |
29 44 45
|
syl2an2r |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑁 ∧ 𝐵 = 0 ) ) → ( ( 𝐺 Σg ( 𝑛 ∈ ( 𝑁 ∖ { 𝑖 } ) ↦ 𝐴 ) ) ( .r ‘ 𝑅 ) 0 ) = 0 ) |
| 47 |
40 46
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑁 ∧ 𝐵 = 0 ) ) → ( ( 𝐺 Σg ( 𝑛 ∈ ( 𝑁 ∖ { 𝑖 } ) ↦ 𝐴 ) ) ( .r ‘ 𝑅 ) 𝐵 ) = 0 ) |
| 48 |
12 38 47
|
3eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑁 ∧ 𝐵 = 0 ) ) → ( 𝐺 Σg ( 𝑛 ∈ 𝑁 ↦ 𝐴 ) ) = 0 ) |
| 49 |
7 48
|
rexlimddv |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑛 ∈ 𝑁 ↦ 𝐴 ) ) = 0 ) |