| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsumdixp.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 2 |
|
gsumdixp.t |
⊢ · = ( .r ‘ 𝑅 ) |
| 3 |
|
gsumdixp.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 4 |
|
gsumdixp.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
| 5 |
|
gsumdixp.j |
⊢ ( 𝜑 → 𝐽 ∈ 𝑊 ) |
| 6 |
|
gsumdixp.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 7 |
|
gsumdixp.x |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑋 ∈ 𝐵 ) |
| 8 |
|
gsumdixp.y |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐽 ) → 𝑌 ∈ 𝐵 ) |
| 9 |
|
gsumdixp.xf |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) finSupp 0 ) |
| 10 |
|
gsumdixp.yf |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) finSupp 0 ) |
| 11 |
6
|
ringcmnd |
⊢ ( 𝜑 → 𝑅 ∈ CMnd ) |
| 12 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → 𝐽 ∈ 𝑊 ) |
| 13 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽 ) ) → 𝑅 ∈ Ring ) |
| 14 |
7
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) : 𝐼 ⟶ 𝐵 ) |
| 15 |
|
simpl |
⊢ ( ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽 ) → 𝑖 ∈ 𝐼 ) |
| 16 |
|
ffvelcdm |
⊢ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) : 𝐼 ⟶ 𝐵 ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) ∈ 𝐵 ) |
| 17 |
14 15 16
|
syl2an |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽 ) ) → ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) ∈ 𝐵 ) |
| 18 |
8
|
fmpttd |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) : 𝐽 ⟶ 𝐵 ) |
| 19 |
|
simpr |
⊢ ( ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽 ) → 𝑗 ∈ 𝐽 ) |
| 20 |
|
ffvelcdm |
⊢ ( ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) : 𝐽 ⟶ 𝐵 ∧ 𝑗 ∈ 𝐽 ) → ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ∈ 𝐵 ) |
| 21 |
18 19 20
|
syl2an |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽 ) ) → ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ∈ 𝐵 ) |
| 22 |
1 2 13 17 21
|
ringcld |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽 ) ) → ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) ∈ 𝐵 ) |
| 23 |
9
|
fsuppimpd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) ∈ Fin ) |
| 24 |
10
|
fsuppimpd |
⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ∈ Fin ) |
| 25 |
|
xpfi |
⊢ ( ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) ∈ Fin ∧ ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ∈ Fin ) → ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) × ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) ∈ Fin ) |
| 26 |
23 24 25
|
syl2anc |
⊢ ( 𝜑 → ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) × ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) ∈ Fin ) |
| 27 |
|
ianor |
⊢ ( ¬ ( 𝑖 ∈ ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) ∧ 𝑗 ∈ ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) ↔ ( ¬ 𝑖 ∈ ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) ∨ ¬ 𝑗 ∈ ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) ) |
| 28 |
|
brxp |
⊢ ( 𝑖 ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) × ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) 𝑗 ↔ ( 𝑖 ∈ ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) ∧ 𝑗 ∈ ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) ) |
| 29 |
27 28
|
xchnxbir |
⊢ ( ¬ 𝑖 ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) × ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) 𝑗 ↔ ( ¬ 𝑖 ∈ ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) ∨ ¬ 𝑗 ∈ ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) ) |
| 30 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽 ) ) → 𝑖 ∈ 𝐼 ) |
| 31 |
|
eldif |
⊢ ( 𝑖 ∈ ( 𝐼 ∖ ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) ) ↔ ( 𝑖 ∈ 𝐼 ∧ ¬ 𝑖 ∈ ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) ) ) |
| 32 |
31
|
biimpri |
⊢ ( ( 𝑖 ∈ 𝐼 ∧ ¬ 𝑖 ∈ ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) ) → 𝑖 ∈ ( 𝐼 ∖ ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) ) ) |
| 33 |
30 32
|
sylan |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽 ) ) ∧ ¬ 𝑖 ∈ ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) ) → 𝑖 ∈ ( 𝐼 ∖ ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) ) ) |
| 34 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽 ) ) → ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) : 𝐼 ⟶ 𝐵 ) |
| 35 |
|
ssidd |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽 ) ) → ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) ⊆ ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) ) |
| 36 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽 ) ) → 𝐼 ∈ 𝑉 ) |
| 37 |
3
|
fvexi |
⊢ 0 ∈ V |
| 38 |
37
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽 ) ) → 0 ∈ V ) |
| 39 |
34 35 36 38
|
suppssr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽 ) ) ∧ 𝑖 ∈ ( 𝐼 ∖ ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) ) ) → ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) = 0 ) |
| 40 |
33 39
|
syldan |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽 ) ) ∧ ¬ 𝑖 ∈ ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) ) → ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) = 0 ) |
| 41 |
40
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽 ) ) ∧ ¬ 𝑖 ∈ ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) ) → ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) = ( 0 · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) ) |
| 42 |
1 2 3
|
ringlz |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ∈ 𝐵 ) → ( 0 · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) = 0 ) |
| 43 |
13 21 42
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽 ) ) → ( 0 · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) = 0 ) |
| 44 |
43
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽 ) ) ∧ ¬ 𝑖 ∈ ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) ) → ( 0 · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) = 0 ) |
| 45 |
41 44
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽 ) ) ∧ ¬ 𝑖 ∈ ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) ) → ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) = 0 ) |
| 46 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽 ) ) → 𝑗 ∈ 𝐽 ) |
| 47 |
|
eldif |
⊢ ( 𝑗 ∈ ( 𝐽 ∖ ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) ↔ ( 𝑗 ∈ 𝐽 ∧ ¬ 𝑗 ∈ ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) ) |
| 48 |
47
|
biimpri |
⊢ ( ( 𝑗 ∈ 𝐽 ∧ ¬ 𝑗 ∈ ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) → 𝑗 ∈ ( 𝐽 ∖ ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) ) |
| 49 |
46 48
|
sylan |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽 ) ) ∧ ¬ 𝑗 ∈ ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) → 𝑗 ∈ ( 𝐽 ∖ ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) ) |
| 50 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽 ) ) → ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) : 𝐽 ⟶ 𝐵 ) |
| 51 |
|
ssidd |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽 ) ) → ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ⊆ ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) |
| 52 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽 ) ) → 𝐽 ∈ 𝑊 ) |
| 53 |
50 51 52 38
|
suppssr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽 ) ) ∧ 𝑗 ∈ ( 𝐽 ∖ ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) ) → ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) = 0 ) |
| 54 |
49 53
|
syldan |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽 ) ) ∧ ¬ 𝑗 ∈ ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) → ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) = 0 ) |
| 55 |
54
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽 ) ) ∧ ¬ 𝑗 ∈ ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) → ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) = ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) · 0 ) ) |
| 56 |
1 2 3
|
ringrz |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) ∈ 𝐵 ) → ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) · 0 ) = 0 ) |
| 57 |
13 17 56
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽 ) ) → ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) · 0 ) = 0 ) |
| 58 |
57
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽 ) ) ∧ ¬ 𝑗 ∈ ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) → ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) · 0 ) = 0 ) |
| 59 |
55 58
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽 ) ) ∧ ¬ 𝑗 ∈ ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) → ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) = 0 ) |
| 60 |
45 59
|
jaodan |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽 ) ) ∧ ( ¬ 𝑖 ∈ ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) ∨ ¬ 𝑗 ∈ ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) ) → ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) = 0 ) |
| 61 |
29 60
|
sylan2b |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽 ) ) ∧ ¬ 𝑖 ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) × ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) 𝑗 ) → ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) = 0 ) |
| 62 |
61
|
anasss |
⊢ ( ( 𝜑 ∧ ( ( 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽 ) ∧ ¬ 𝑖 ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) × ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) 𝑗 ) ) → ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) = 0 ) |
| 63 |
1 3 11 4 12 22 26 62
|
gsum2d2 |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) ) ) = ( 𝑅 Σg ( 𝑖 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) ) ) ) ) ) |
| 64 |
|
nffvmpt1 |
⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) |
| 65 |
|
nfcv |
⊢ Ⅎ 𝑥 · |
| 66 |
|
nfcv |
⊢ Ⅎ 𝑥 ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) |
| 67 |
64 65 66
|
nfov |
⊢ Ⅎ 𝑥 ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) |
| 68 |
|
nfcv |
⊢ Ⅎ 𝑦 ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) |
| 69 |
|
nfcv |
⊢ Ⅎ 𝑦 · |
| 70 |
|
nffvmpt1 |
⊢ Ⅎ 𝑦 ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) |
| 71 |
68 69 70
|
nfov |
⊢ Ⅎ 𝑦 ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) |
| 72 |
|
nfcv |
⊢ Ⅎ 𝑖 ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑥 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑦 ) ) |
| 73 |
|
nfcv |
⊢ Ⅎ 𝑗 ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑥 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑦 ) ) |
| 74 |
|
fveq2 |
⊢ ( 𝑖 = 𝑥 → ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) = ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑥 ) ) |
| 75 |
|
fveq2 |
⊢ ( 𝑗 = 𝑦 → ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) = ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑦 ) ) |
| 76 |
74 75
|
oveqan12d |
⊢ ( ( 𝑖 = 𝑥 ∧ 𝑗 = 𝑦 ) → ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) = ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑥 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑦 ) ) ) |
| 77 |
67 71 72 73 76
|
cbvmpo |
⊢ ( 𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) ) = ( 𝑥 ∈ 𝐼 , 𝑦 ∈ 𝐽 ↦ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑥 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑦 ) ) ) |
| 78 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐽 ) → 𝑥 ∈ 𝐼 ) |
| 79 |
7
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐽 ) → 𝑋 ∈ 𝐵 ) |
| 80 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) = ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) |
| 81 |
80
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑥 ) = 𝑋 ) |
| 82 |
78 79 81
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐽 ) → ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑥 ) = 𝑋 ) |
| 83 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐽 ) → 𝑦 ∈ 𝐽 ) |
| 84 |
|
eqid |
⊢ ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) = ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) |
| 85 |
84
|
fvmpt2 |
⊢ ( ( 𝑦 ∈ 𝐽 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑦 ) = 𝑌 ) |
| 86 |
83 8 85
|
3imp3i2an |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐽 ) → ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑦 ) = 𝑌 ) |
| 87 |
82 86
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐽 ) → ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑥 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑦 ) ) = ( 𝑋 · 𝑌 ) ) |
| 88 |
87
|
mpoeq3dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 , 𝑦 ∈ 𝐽 ↦ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑥 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑦 ) ) ) = ( 𝑥 ∈ 𝐼 , 𝑦 ∈ 𝐽 ↦ ( 𝑋 · 𝑌 ) ) ) |
| 89 |
77 88
|
eqtrid |
⊢ ( 𝜑 → ( 𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) ) = ( 𝑥 ∈ 𝐼 , 𝑦 ∈ 𝐽 ↦ ( 𝑋 · 𝑌 ) ) ) |
| 90 |
89
|
oveq2d |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) ) ) = ( 𝑅 Σg ( 𝑥 ∈ 𝐼 , 𝑦 ∈ 𝐽 ↦ ( 𝑋 · 𝑌 ) ) ) ) |
| 91 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑅 |
| 92 |
|
nfcv |
⊢ Ⅎ 𝑥 Σg |
| 93 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐽 |
| 94 |
93 67
|
nfmpt |
⊢ Ⅎ 𝑥 ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) ) |
| 95 |
91 92 94
|
nfov |
⊢ Ⅎ 𝑥 ( 𝑅 Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) ) ) |
| 96 |
|
nfcv |
⊢ Ⅎ 𝑖 ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑥 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑦 ) ) ) ) |
| 97 |
74
|
oveq1d |
⊢ ( 𝑖 = 𝑥 → ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) = ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑥 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) ) |
| 98 |
97
|
mpteq2dv |
⊢ ( 𝑖 = 𝑥 → ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) ) = ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑥 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) ) ) |
| 99 |
|
nfcv |
⊢ Ⅎ 𝑦 ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑥 ) |
| 100 |
99 69 70
|
nfov |
⊢ Ⅎ 𝑦 ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑥 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) |
| 101 |
75
|
oveq2d |
⊢ ( 𝑗 = 𝑦 → ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑥 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) = ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑥 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑦 ) ) ) |
| 102 |
100 73 101
|
cbvmpt |
⊢ ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑥 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) ) = ( 𝑦 ∈ 𝐽 ↦ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑥 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑦 ) ) ) |
| 103 |
98 102
|
eqtrdi |
⊢ ( 𝑖 = 𝑥 → ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) ) = ( 𝑦 ∈ 𝐽 ↦ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑥 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑦 ) ) ) ) |
| 104 |
103
|
oveq2d |
⊢ ( 𝑖 = 𝑥 → ( 𝑅 Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) ) ) = ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑥 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑦 ) ) ) ) ) |
| 105 |
95 96 104
|
cbvmpt |
⊢ ( 𝑖 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑥 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑦 ) ) ) ) ) |
| 106 |
87
|
3expa |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑦 ∈ 𝐽 ) → ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑥 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑦 ) ) = ( 𝑋 · 𝑌 ) ) |
| 107 |
106
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑦 ∈ 𝐽 ↦ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑥 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑦 ) ) ) = ( 𝑦 ∈ 𝐽 ↦ ( 𝑋 · 𝑌 ) ) ) |
| 108 |
107
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑥 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑦 ) ) ) ) = ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑋 · 𝑌 ) ) ) ) |
| 109 |
108
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑥 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑦 ) ) ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑋 · 𝑌 ) ) ) ) ) |
| 110 |
105 109
|
eqtrid |
⊢ ( 𝜑 → ( 𝑖 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑋 · 𝑌 ) ) ) ) ) |
| 111 |
110
|
oveq2d |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑖 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) ) ) ) ) = ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑋 · 𝑌 ) ) ) ) ) ) |
| 112 |
63 90 111
|
3eqtr3d |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑥 ∈ 𝐼 , 𝑦 ∈ 𝐽 ↦ ( 𝑋 · 𝑌 ) ) ) = ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑋 · 𝑌 ) ) ) ) ) ) |
| 113 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑅 ∈ Ring ) |
| 114 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐽 ∈ 𝑊 ) |
| 115 |
8
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑦 ∈ 𝐽 ) → 𝑌 ∈ 𝐵 ) |
| 116 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) finSupp 0 ) |
| 117 |
1 3 2 113 114 7 115 116
|
gsummulc2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑋 · 𝑌 ) ) ) = ( 𝑋 · ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ) ) ) |
| 118 |
117
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑋 · 𝑌 ) ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑋 · ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ) ) ) ) |
| 119 |
118
|
oveq2d |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑋 · 𝑌 ) ) ) ) ) = ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( 𝑋 · ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ) ) ) ) ) |
| 120 |
1 3 11 5 18 10
|
gsumcl |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ) ∈ 𝐵 ) |
| 121 |
1 3 2 6 4 120 7 9
|
gsummulc1 |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ ( 𝑋 · ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ) ) ) ) = ( ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ) · ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ) ) ) |
| 122 |
112 119 121
|
3eqtrrd |
⊢ ( 𝜑 → ( ( 𝑅 Σg ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ) · ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ) ) = ( 𝑅 Σg ( 𝑥 ∈ 𝐼 , 𝑦 ∈ 𝐽 ↦ ( 𝑋 · 𝑌 ) ) ) ) |